direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

A2: Analysis and computation of stability exponents for delay differential-algebraic equations

Principal investigator:

Prof. Dr. Volker Mehrmann

Project summary:

Delay differential-algebraic equations (DDAEs) arise in a variety of applications including flow control, biological systems and electronic networks. We will study existence and uniqueness as well as the development of numerical methods for general nonlinear DDAEs. For this, regularization techniques need to be performed that prepare the DDAE for numerical simulation and control. We will derive such techniques for DDAEs on the basis of a combination of time-differentiations and time-shifts, in particular for systems with multiple delays. We also plan to extend the spectral stability theory, i.e. the concepts of Lyapunov, Bohl and Sacker-Sell spectra, to DDAEs. We will also develop numerical methods for the computation of these spectra using semi-explicit integration methods. Another goal is to study the solution of algebraically constrained partial delay-differential equations arising in flow control and to derive discretization as well as optimal control methods in space and time.