Problemlösung:

\[ f(x) \]

Praktisch

\[ \Delta f \]

\[ x_{\min}, x_{\max} \]

FP: \[ \frac{\partial P(x)}{\partial x} = \int_{FP} P(x) \]

\[ \int_{FP} = \frac{\partial}{\partial x} f(x) + \frac{D}{x} \frac{\partial}{\partial x} \]

\[ = f''(x) + \frac{\nu_1 x_0}{\nu_2 + x_0} \]

Ausbau (wahrscheinlich)

Verwende Standard (a)

\[ Y(x) = -\frac{\Phi(x) e^{-\frac{\Phi(x)}{\nu_1}}}{\nu_1} \]

= 0

mit \[ \Phi(x) = \ln \left( \frac{\nu_2^2}{\nu_1} \right) - \sqrt{\frac{x}{\nu_2^2}} \]
\[ h_n : \Phi(x) = -\Phi(x), \Phi^{(2)}(x) = \text{const} \]

\[ \Rightarrow \Phi(x) = \ln D + \frac{f(x) - f(c)}{D} \]

\[ \Rightarrow x(x) = -De^{-\frac{f(c)}{D}} \]

\[ \times \frac{\partial}{\partial x}(e^{\frac{f(x) - f(c)}{D}}) \]

Above line

\[ \frac{\partial f}{\partial D} \text{ sin } \phi D \]

\[ \text{Inexplicable,} \]

\[ \text{Bonnie Sue both !} \]

\[ \text{in tangent to D} \]

\[ \text{and ; } D = \frac{4T}{\sin \phi} \]

\[ \Rightarrow \phi \gg 4T \]

\[ \Rightarrow \text{quasi-stationary Tafel} \]

\[ \text{in den Tal} \]
\[ \frac{\partial}{\partial x} P(x,t) = 0 \]
\[ \frac{\partial}{\partial t} P(x,t) + \frac{\partial}{\partial x} J = 0 \]

\[ J = \text{const} \]

Sowohl das Integral

\[ J = e^{-f(x)\Delta t} \frac{\partial}{\partial x} \left( e^{f(x)\Delta t} P(x) \right) \]

hat konstante Werte

Integrale von \( x_{\text{min}} \) (Mittenpunkt auf \( f(x) \)) bis \( x_t \)

\[ \int_{x_{\text{min}}}^{x_t} e^{f(x')/\Delta t} \, dx' = \Delta t \cdot e^{f(x_{\text{min}})/\Delta t} \cdot P(x_{\text{min}}) \]

\[ - \Delta t \cdot e^{f(x_t)/\Delta t} \cdot P(x_t) \]
Weiter Anhang.

\[ P(x_A) \rightarrow 0 \]

de Testbeine he von sich selbst hinter uns!

\[ \Rightarrow J = D e^{\int_{X_{min}}^{x} f(x)dx} \]

Nächster Schritt: Ansatz für die Wahrscheinlichkeit

\[ \Delta Y \gg 1 \quad \text{(Sehr hohe Barriere)} \]

wird \( P \) in Nähe der Horizon

in "nahe" zu skizzieren ver lässt!

\[ \Rightarrow P_{steh}(x) = \alpha e^{-\Phi(x)} \]

(I.10) \quad \text{mit} \quad \Phi(x) = f(x)/D
Unter Verwendung der Näherung für die Exponentialfunktion erhalten wir näherungsweise:

\[ p_{\text{stat}}(x_{\text{mii}}) \approx x \cdot e^{-f(x_{\text{mii}})/D} \]

Dasselbe gilt in der Nähe von \( x \) (mit \( x \rightarrow x_{\text{mii}} \in \text{medium} \) undThai

\[ p_{\text{stat}}(x) = x \cdot e^{-f(x)/D} \]

\[ \Rightarrow \frac{p_{\text{stat}}(x)}{p_{\text{stat}}(x_{\text{mii}})} = e^{-\frac{f(x) - f(x_{\text{mii}})}{D}} \]

(Berechnung der Beide Lösung., das Teil der um

Tal (d.h. in der Nähe von \( x_{\text{mii}} \)) zu finden

\[ P = \int_{x_{1}}^{x_{2}} p(x') dx' = p_{\text{stat}}(x_{\text{mii}}) e^{-\frac{f(x_{\text{mii}})}{D}} \int_{x_{1}}^{x_{2}} e^{-\frac{f(x)}{D}} dx' \]

(Berechnung der Ausdrucksab)
Berechnung der folgenden Relation:

\[
\begin{align*}
\bar{P} \cdot N &= J \\
\bar{P} &= \text{Ausbreitungsrate}
\end{align*}
\]

"dann"

\[P \cdot \dot{x} = J\]

\[\frac{\Delta x}{\Delta t} \rightarrow \text{Gesamt} \quad \text{wir} \quad \text{müssen}
\]

Setze \[\dot{x} = \frac{\Delta x}{\Delta t}\]

\[P \cdot \Delta x \cdot \frac{1}{\Delta t} = J\]

\[\text{total} \quad \text{wir} \quad \text{müssen die}
\]

\[(\text{beobachtet})\]
Das ist der Ausdruck für \( \frac{1}{n} \). 

Zur Klärung: Quasiechtheit versteht man in der Formulierung der mathematischen Aussage.
\[ \int_{x_{\min}}^{x_{\max}} e^{-\frac{f(x)}{D}} \, dx \]

\[ a = e^{-\frac{f(x_{\min})}{D}} \sqrt{\frac{2\pi D}{f''(x_{\min})}} \]

2. Integrals völlig analoge Vorgehens:

Bei einer Normalverteilung kann man \( x \sim \chi_{0} \)

\[ f(x) = f(x_{\max}) + \frac{1}{2} \frac{f''(x_{\max})(x-x_{\max})^2}{\sigma^2} + \phi \]

\[ = f(x_{\max}) \int_{x_{\min}}^{x_{\max}} e^{-\frac{f(x)}{D}} \, dx \]

\[ a = e^{-\frac{f(x_{\min})}{D}} \sqrt{\frac{2\pi D}{f''(x_{\max})}} \]
Ersetze in Ausdruck \( f = \frac{1}{r} \)

\[
\frac{1}{r} = \frac{1}{D} e^{-\frac{f(x_{min})}{D} \frac{f(x_{max})}{D}}
\]

\[
\frac{2\pi D}{\sqrt{f''(x_{min}) f''(x_{max})}}
\]

Ausblicksnah:

\[
N = \frac{1}{2\pi} \sqrt{f''(x_{min}) f''(x_{max})} e^{-\frac{\Delta f}{D}}
\]

mit \( \Delta f = f(x_{max}) - f(x_{min}) \)

**Bemerkung**

- Die zentrale Größe, die in Betracht genommen
  ist, ist die Energieänderung \( \Delta f \)
  zur chemischen Energie (\( D = 4.7 \, \text{eV} \))
- Expansiblen Abfall mit AF

\[ \Rightarrow \text{"Authentic" - Verhalten!} \]

typisch für chemisch aktivierter Prozess

- Wir haben bisher mit dem Katalysator von Risken (Buch) gearbeitet

"Nichts Einheit" nach K. K.

\[ \mathcal{L}_{TP} = D \frac{\partial^2}{\partial x^2} + \frac{D}{kGT} \frac{\partial}{\partial x} f(\chi) \]

\[ \Rightarrow n = \frac{D}{2 \pi kGT} \sqrt{f''(\chi_{\text{ml}}) f''(\chi_{\text{re}})} e \]