4.) Quantisierung des Schrödinger-Felds:

nichtrelativistische Fermionen (Bosonen und Masse

a) Quantisierung lt. Vorschrift

\[i \frac{d}{dt} \Psi_s(r, t) = \mathcal{H}_s \Psi_s(r, t) \quad \Rightarrow \quad \begin{align*}
[\Psi_s(r, t), \mathcal{H}_s^\dagger(r', t')] &= \delta(r-r') \\
\mathcal{H}_s &= \int d^3r \mathcal{H}_s^0(r) \Psi_s(r, t) \\
\Psi_s(r, t) &= \frac{i}{\hbar} [\mathcal{H}_s, \Psi_s(r, t)]
\end{align*} \]

Die Heisenbergsche Gleichung bestimmt die Dynamik.

5.) Modenentwicklung

Eigenfunktion für Teilchen, Schrödinger-Gleichung

\[\mathcal{H}_s = -\frac{\hbar^2}{2m} \Delta + V(r), \quad \Psi_s = \sum_{\lambda} c_\lambda(t) \psi_\lambda(r) \]

aus \[\mathcal{H}_s \psi_\lambda = \varepsilon_\lambda \psi_\lambda \] quasicharakter

habe gezeigt \((\Psi_s \rightarrow \Psi, \mathcal{H}_s \rightarrow \mathcal{H})\)
\[H = \sum \epsilon \alpha \alpha \sigma_{\alpha} a_{\alpha}^\dagger a_{\alpha} \quad (a_{\alpha} \to a_{\alpha}) \]

\[
[a_{\alpha}, a_{\alpha}^\dagger] = \delta_{\alpha \alpha}, \quad [a_{\alpha}^\dagger, a_{\alpha}^\dagger] = \frac{i}{\hbar} [H, a_{\alpha}] = -i \frac{\hbar}{\epsilon} \sigma_{\alpha} [a_{\alpha}^\dagger, a_{\alpha}^\dagger] = 0
\]

In Analogie zum harmonischen Oszillator (Kapitel 1) liegt \(\psi_{\alpha} = \langle a_{\alpha}^\dagger a_{\alpha} \rangle \) Quanten vor. Offensichtlich liegt hier eine Vielfachtheorie vor, allerdings besitzt beim gekoppelten Fabeln zwischen den Oszillatoren

(\(\sum \alpha \) unabhängige Oszillatoren)

c) AFT- Observabke \(\Omega \)

wird als Reaktion des Systems \((\Omega) \) auf eine Änderung eines externen Fabels \(U_{\text{E}}(r,t) \) definiert

\[
\Omega = \frac{\delta H}{\delta U_{\text{E}}(r,t)} = \frac{\delta H}{\delta U_{\text{E}}(r,t)} \left(\int d^3 r U_{\text{E}}(r,t) U_{\text{E}}(r',t) \Phi(r',t) \right)
\]
= \gamma^+(r_1 t) \gamma^-(r_1 t) \delta_{ij}

In unserem Bsp ist die Observable die Ladungsichte

d) Erwartungswerte \langle \gamma'^+ \gamma'^- \rangle

würde absichtlich in Bracket Formulismen

gebräuchlich und würden gleich bestimmt:

Eigenfunktionen von \mathcal{H}

4. 1. Energie eigen und protonen f. ein Feld nicht

behandelt Fermionen und Bosonen:

löse: \text{e}^{a_2 + \beta_2 \mathbf{r}_2} \gamma^+ = \gamma^+ \text{e}^{a_2 + \beta_2 \mathbf{r}_2}

Quantenzahl der Zustände sind \gamma^+ und da die

sind in bestimmen

Fermionen:

\text{löse: } a_2 \gamma^+ + a_2^+ \gamma^+ = 1

\text{Bosonen: }

\text{Die einzige negl. Var für } \gamma \text{ sind } \beta \cdot \left[a_2^+ a_2^+ \right] = 1
\[a_1^+ a_1^+ a_1^+ a_1^+ = a_1^+ (a_1^+ a_1^+ a_1^+ a_1^+ a_1^+ a_1^+) = a_1^+ a_1^+ a_1^+ + 0 \]

\[u_\lambda^2 = u_\lambda \]

Zweiter Term \(a_1^+ a_1^+ a_1^+ a_1^+ a_1^+ a_1^+ \) ist Null, weil \(a_1^+ a_1^+ + a_1^+ a_1^+ = 0 \)

\[a_1^+ a_1^+ = -a_1^+ a_1^+ \Rightarrow 0 \]
\[a_1^+ a_1^+ = -a_1^+ a_1^+ \Rightarrow 0 \]

\[u_\lambda^2 \langle u_\lambda \rangle = u_\lambda \langle u_\lambda \rangle \]

\[u_\lambda u_\lambda \langle u_\lambda \rangle = u_\lambda \langle u_\lambda \rangle \]

\[u_\lambda u_\lambda \langle u_\lambda \rangle = u_\lambda \langle u_\lambda \rangle \]

\[\Rightarrow u_\lambda^2 = u_\lambda \Rightarrow u_\lambda = 0 \text{ oder } u_\lambda = 1 \]

\[\text{nur lösbar} \]

Die einzige mögliche Besetzungsfolge der Terme ist zur Indizierungszeit.
Sind \(u_\lambda = 0, 1 \), spiegelt das Pauli-Prinzip
sich, ist also in der Wechselstromrelation berücksichtigt.
6) Die Eigenfunktion zu \(u_1 = 0,1 \), also \(10\), \(|1\rangle \) sind mit \(a_1^+ 10\rangle = |1\rangle \) gegeben:

- Für \(u_1 = 0 \) sei \(10\rangle \) das Eigenzustand

\[
\begin{align*}
\forall \lambda \quad a_1^+ 10\rangle &= a_1^+ a_1^+ a_1^+ 10\rangle \\
&= a_1^+ (1 - a_1^+ a_1^+ 10\rangle = a_1^+ 10\rangle + 0 \\
\Rightarrow \quad u_1 (a_1^+ 10\rangle &= 1 (a_1^+ 10\rangle)
\end{align*}
\]

Somit \(u_1 10\rangle = 1 |1\rangle \)

\[
\Rightarrow \quad a_1^+ 10\rangle = |1\rangle
\]

Zusammenfassende Formulierung

a) \(u_1 = 0,1 \) (Produktzustand)

Es gilt nur 1 oder kein Teilchen in Kasten 1

b) \(|u_1\rangle \rightarrow 10\rangle, |1\rangle \)
Es gilt die unbeschränkt und die beschränkte Zerlegung.

c) Gesamtprobleme d. Formen:

\[\hat{H}\ket{\Psi} = E \ket{\Psi}, \quad E = \sum_{k} \omega_k \bar{\psi}^k \psi^k \]

\[\ket{\Psi} = \prod_{k} \ket{\psi_k} \], (2. Norm: \(\ket{\psi_1} \leq \ket{\psi_2} \))

\[E = \sum_{k} \omega_k \bar{\psi}^k \psi^k \]

ist es sich um unabhängige Oszillatoren handelt.

\[\text{Bosonen:} \quad \text{Mimung quantisieren, sich beim harmonischen Oszillator verwenden:} \]

\[[\hat{a}_{\lambda}, \hat{a}_{\lambda'}^+] = \delta_{\lambda\lambda'}, [\hat{a}_{\lambda}, \hat{a}_{\lambda'}^-] = 0 \]

Ergebnisse können direkt übernommen werden:

c) \(\psi_k = 0, 1, 2, 3 \ldots \)

Es gilt keine Beschränkung bei Besetzung bosonischer Zustände.

b) \(\ket{\psi_k} \rightarrow \ket{0}, \quad \ket{\psi_k} = \frac{1}{\sqrt{\omega_k}} (\hat{a}_k^+) \ket{0} \)
c) Gesamtpotential wird analog Fourier gelöst

4.2. Interpretation der Teilchenebene prozedural

- technisch: a^+a leichter zu behandeln als die entsprechende Vielfache der Schrödingerschen Funktionen.

- $|u>\rangle$ ist Zustand des des Beschleunigungsgradienten der λ-te Feldmode mit $a\lambda$-Teilchen beschrieben.

- Jede Schrödingerstrecke kann als Beschleunigung/Aufgung einer Feldmoden beschrieben werden.

Elektronen sind die Moden eines Fermi-Schödingerfelds.

- Späto: Photonen sind die Moden des elektromagnetischen Felds.

- Allgemeiner Zustand mit N Teilchen:

$$ |\Psi_N\rangle = \sum C_{\mu_1,\ldots,\mu_N} \prod |\mu_n\rangle $$

N-Teilchen

Summe über alle Möglichkeiten mit N Teilchen auf die verschiedenen
Interpretation von \(\Psi^+(r_1 t) \), \(\Psi(r_1 t) \):

\[
\Psi_N > = \sum C(\xi_{\lambda} t) \bar{\Pi}(\xi_{\lambda}^t) \Psi(0) \xrightarrow{\text{Termine}} \Psi(t) \xrightarrow{\text{Vakuum}} \Psi(t)
\]

\[
a_1^+ = \int d^3 r \Psi^+(r_1 t) \Psi(r_1 t)
\]

Man sieht und entdeckt, dass \(\Psi^+(r_1 t) \) auf dem Vakuum zur Stelle \(r_1 \) mit erzeugt \(\Psi(t) \) erzeugt

5) Wechselwirkende Quarkfelder I:

Die Kopplung zwischen Gluonen und Molekül / Testkörper Schwingungen betrachtet ein Molekül mit kartesischer Koordinate \(\{K\} \)
Beschränken wir auf kleine Auslenkungen und machen harmonische Näherung und Normal mode analyse.

Die Nkone bilden dann ein komplizierter Schwingungsfähiges System mit $3N - 6$ Freiheitsgraden.

Siehe Mechanik ("Normalmode" Kapitel 55, 2006)

analoge Notation $\tilde{f}_k \tilde{q}_r - \bar{q}_r + \delta \bar{q}_r$

Die Lagekoordinate \tilde{q}_r der r-ten Koordinate wird um
Pulskette \(\Phi_{0} \) und eine kleine Auslenkung entwickelt
\[
\{ \Phi_{0} \} \rightarrow \{ q_{i} \} \quad i = 1 - 3N
\]

\[
V^{e} = V_{\text{eff}}^{e} (Pulskette = \Phi_{0}) + \frac{1}{2!} \sum \partial_{q_{i}} \partial_{q_{j}} V^{e} \delta_{q_{i}} \delta_{q_{j}}
\]

1. Ord. Taylor = 0) und Minimum

Trotz der Normalmod-Analyse ist nicht diagonalform zu berücksichtigen:

\[
H = \mathcal{T} + V_{\text{eff}}^{e} (\mathcal{K}) = \sum \left(\frac{p_{\alpha}^{2}}{2m_{\alpha}} + \frac{w_{\alpha} m_{\alpha} y_{\alpha}^{2}}{2} \right) + V_{\text{eff}}^{e}
\]

Es entsteht ungeschoppelt Oszillator, mit Impuls \(p_{\alpha} \) und Lage \(y_{\alpha} \)

\[
8 \ddot{\text{y}} m_{\alpha} = \sum \frac{y_{\alpha} (t)}{a} \ddot{y}_{\text{eff}} m_{\alpha} , \quad \ddot{y}_{\alpha} + w_{\alpha}^{2} y_{\alpha} = 0
\]

\(y_{\alpha} \) sind die Eigenvektoren der diagonalisierten

\[
\gamma_{\alpha}
\]
Hess-Matrix V_{eff}.

5) Elektron- Kern- Wechselwirkung für kleine Annäherungen

$$V_{e-K}(i,k) = \sum \frac{-2e^2}{u_1 \frac{\vec{r}}{r_1} - \frac{\vec{q}_m}{q_m}}$$

Coulomb zw. Kern und Elektron

$$= V_{e-K} (Rutledge q_m)$$

$$+ \sum \frac{\delta q_m \cdot \vec{r}}{m} \frac{1}{q_m}$$

durch q_m erledigen

c) Quantisierung im QFT-Formalismus

Gesamthaufkonstante:
\[T_{el} + \nu_{el-k} (q_{m0}) + \nu_{el-k}^{\delta q} + T_{k} + \nu_{k-k} (q_{m0}) + \nu_{k-k}^{\delta q_2} \]

\[\text{Ruhelage} \]

\[H_{\text{elektrisch}} = \int d^3 \mathbf{r} \frac{q^+ (\mathbf{r}, t)}{2 \mu} \left[\frac{\hat{\mathbf{p}}^2}{2 \mu} + V_{el-k} (q_{m0}) + V_{k-k} (q_{m0}) \right] \]

\[K_{\text{elektronen}} = \sum_e \left(E_{el} + V_{k-k} (q_{m0}) \right) a_e^+ a_e \]

\[H_{\text{Kern}} = \sum_\alpha \hbar \omega_\alpha \ b_\alpha^+ b_\alpha \]

\[H_{el-k} = \int d^3 \mathbf{r} \frac{q^+ (\mathbf{r}, t)}{2 \mu} V_{el-k}^{\delta q} (q_{m0}) \varphi (\mathbf{r}, t) \]

\[\times \]

\[= \sum_{\alpha \beta} a_{\alpha}^+ a_{\beta} \xi_{\alpha} \xi_{\beta} \left(b_\alpha + b_\beta^+ \right) \]

\[\omega \sim \gamma_k = \left(\frac{\hbar}{2 \mu \omega_{el-k}} \right)^{\frac{1}{2}} (b_\alpha + b_\alpha^+) \]
\[H = \sum_e \varepsilon_e a_e^+ a_e + \sum \kappa \omega \kappa b_{1\kappa}^+ b_{1\kappa} + \sum \kappa \alpha \omega \kappa a_{2\kappa}^+ a_{2\kappa} (b_{2\kappa}^+ + b_{2\kappa}) \delta_{\kappa \alpha}^{ee'} \delta_{\kappa \alpha}^{ee'} \delta_{\kappa \alpha}^{ee'} \]

Kopplung zwischen Kern-OSZILLATIONEN + Elektronen

Phonon: Schwingungsquanten des Kernschwingungen