\[\langle N_j \rangle = \frac{1}{\exp \left(\frac{E_j - \mu}{kT} \right) - \varepsilon} \]

mit \(\varepsilon = \begin{cases} \frac{-1}{0} & \text{Terni-Diacc} \\ \text{Maxwell-Boltzmann} & +1 \\ \text{Boze-Einstein} & \end{cases} \)

\[\frac{\varepsilon_j}{\mu} = 1 - \frac{1}{1 - t_j} \]

\[t_j = e^\beta (\mu - E_j) \]

Übergang zur Quasi-Isothermie der Zustände \(E = \frac{p^2}{2m} \)

\[\ln \Xi = \sum_j \ln \Xi_j = -\sum_j \ln \left(1 - 5 e^{-\beta E_j} \right) \quad (5 \times \text{Fugazität}) \]

\[= -(2S + 1) \frac{4\pi V}{\hbar^3} \int_{-\infty}^{\infty} dp \, p^2 \ln \left[1 - 5 e^{-\beta \frac{p^2}{2m}} \right] \]

Part. Inf. \(\Xi = -(2S + 1) \frac{4\pi V}{\hbar^3} \int_{0}^{\infty} dp \, p^2 \ln \left(1 - 5 e^{-\beta \frac{p^2}{2m}} \right) \]

\[= \frac{2}{3} \beta (2S + 1) \frac{4\pi V}{\hbar^3} \int_{0}^{\infty} dp \, p^2 \frac{1}{5 \exp \left(\frac{\beta p^2}{2m} \right) - 1} \]

\[= \frac{2}{3} \beta (2S + 1) \frac{V}{\hbar^3} \int_{0}^{\infty} dp \, p^2 \langle N(p) \rangle \quad \langle N(p) \rangle = E(p) \]

\[= \frac{2}{3} \beta \frac{V}{\hbar^3} \]

\[\Rightarrow \frac{p}{V} = kT \ln \Xi = \frac{2}{3} U \quad \text{wie für Terni-Diacc} \]
Verdünntes Bosengas (quasibläser, nichtentarteter Grenzfall)

Entw. nach Potenzen von \(\frac{h}{kT} \ll 1 \)

\[
\tilde{N} = \sum_j \langle \tilde{N}_j \rangle \approx (2S+1) \frac{4\pi V}{h^3} \int dp \frac{p^2}{\exp\left(\frac{p^2}{2mkT}\right)-1}
\]

\[
\frac{p^2}{2mkT} = \frac{y^2}{4}
\]

\[
= \frac{2S+1}{2} \frac{4\pi V}{h^3} (2\pi kT)^{3/2} \int_0^\infty dy \frac{y^{1/2}}{\left(1-\frac{1}{5} e^{-y/4}\right)^{1/2}}
\]

\[
\approx \frac{5}{2\sqrt{\pi}} \int_0^\infty dy \frac{y^{1/2}}{1-\frac{1}{5} e^{-y/4}} e^{-y/4}
\]

\[
\tilde{N} \approx V \frac{2S+1}{\lambda^3} e^{\frac{h}{kT}} \left[1 + \frac{1}{2^{3/2}} \frac{\tilde{N}_2^3}{V(2S+1)}\right]
\]

\[
\tilde{N}_2^3 = \left(\frac{\hbar}{2\pi mkT}\right)^{3/2}
\]

Elim. von \(\mu \) durch \(\tilde{N} \):

0. Näherung: \(\tilde{N} = V \frac{2S+1}{\lambda^3} \tilde{N} \)

1. Näherung: \(\tilde{N} = V \frac{2S+1}{\lambda^3} \tilde{N} \left[1 + \frac{1}{2^{3/2}} \frac{\tilde{N}_2^3}{V(2S+1)}\right] \)

\[
\Rightarrow \tilde{N} = e^{\frac{h}{kT}} \approx \frac{\tilde{N}_2^3}{V(2S+1)} \left[1 - \frac{1}{2^{3/2}} \frac{\tilde{N}_2^3}{V(2S+1)}\right]
\]
Junge Energie

\[U = (2S+1) \frac{4\pi V}{\hbar^3} \int dp \frac{p^2}{2m} \exp \left\{ \frac{(p^2 - \mu)}{kT} \right\} - 1 \]

\[= \frac{2S+1}{2} \frac{4\pi V}{\hbar^3} (2\pi kT)^{3/2} \int \frac{dy}{y} \frac{3}{2} \frac{5e^{-y}}{1 - 5e^{-y}} \]

\[U \approx \frac{3}{2} kT \bar{N} \left[1 - \frac{1}{2^{5/2}} \frac{\lambda^3}{V(2S+1)} \bar{N} \right] \]

Quantenhomoletus

\[pV = \frac{2}{3} U = kT \bar{N} \left[1 - \frac{1}{2^{5/2}} \frac{\lambda^3}{V(2S+1)} \bar{N} \right] \]

Bose-Anziehung: Quantentern. (term. Zustandsgl.)

Bose-Einstein-Kondensation (theor.: Einstein 1925, exp.: Ketterle, Cornelle, Wieman 95, Nobelpreis 2001)

Grundzustand des Bose-Gases: \(E_0 = 0 \)

\[\langle N_0 \rangle = \frac{1}{5^{-1} - 1} = \frac{5}{1 - 5} \quad \text{mit Fugazität} \ 5 \]

Besetzungsanzahl kann makroskopisch groß werden

für \(S \approx 1 \), d.h. \[\langle N_0 \rangle \propto \bar{N} \] (alle \(T \), im Grundzustand kondensiert)

alle \[\bar{N} = \langle N_0 \rangle + N' \]
(i) $\xi \ll 1$ (normale Phase): $\langle N_0 \rangle$ vernachlässigbar
\Rightarrow verdünntes Bosegas, $\xi \approx 0$.

(ii) $\xi \approx 1$ (kondensierte Phase): $N' \approx \sum_{j>0} \frac{1}{e^{\beta E_j} - 1}$

\[
\frac{N'}{V} \approx (2S+1) \frac{1}{\alpha^3} \frac{2}{\sqrt{\pi}} \int_0^{1/\bar{\alpha}} dy \, y^{1/2} e^{-y} = \int_{1}^{\bar{\alpha}} \frac{dy}{e^{y} - 1}
\]

normale Komp. verhält sich wie ein verdünntes Bosegas

\[
\frac{N'}{V} \approx \frac{2S+1}{\alpha^3} \sim T^{3/2}
\]

\[
\frac{N'}{N} = \left(\frac{T}{T_c} \right)^{3/2} \quad T_c \text{ def durch } \quad \xi \approx \frac{N'}{V} \frac{2T_c}{2S+1} \approx 1
\]

\[
\frac{\langle N_0 \rangle}{\bar{N}} = \begin{cases}
1 - \left(\frac{T}{T_c} \right)^{3/2} & T < T_c \\
0 & T \geq T_c
\end{cases}
\]

Bruchteil der kondens. Phase

\[
\frac{\langle N_0 \rangle}{\bar{N}} \quad \text{gebiet der Bose-Einstein-Kondensatoren}
\]

T_c (2-kompon. Gas; normale + kondens. Phase)
Phasenübergang bei T_c: normale Phase \rightarrow kondensierte Phase (Bose-Einstein-Kondensat).

- makroskopische Quantenphänomene

Anwendung: Supraleitere Phase von He bei tiefe Temp. ähnl. 2-Komponenten-Flüssigkeit aus normaler u. kondensierter Komponente (Fitz London: 1938)

aber: stark wechselwirkender Bose-Gas \Rightarrow max. 9% Kondensat

Bose-Einstein-Kond. mit schwach wechselwirk. Gase

Var. fr. Exp. $\frac{N}{V} \times 3 > 2.61$

- hohe Phasenraumdichte
- sehr tief. Temp. (< 1 µK bei $\frac{N}{V} \approx 10^4 \text{cm}^{-3}$)

\rightarrow Lassabildung von Atomen (Nobelpreis 1997, Chu, Coleman, Townendji, Phillips)

$\Rightarrow 90-95\%$ Kondensat

Kettl: Na (""") 10^5

Hulet: Li (1996)

• kohärente makroskop. Quantenwolken (Quantenflüssigkeiten)
• Atomlasers: kohärente stimm. Ein. von Atomstrahlen
 → Interferenz (Ketterle, Hänsch 1997, Nobelpreis 2005)
• Materiewellenverzicht
• Materiewellen-Solitonen
 \[i \hbar \dot{\psi} = \left(-\frac{\hbar^2}{2m} \frac{\Delta}{\Lambda} + V_{\text{ext}} + g \mid \psi \mid^2 \right) \psi (x,t) \]
 \[\psi \text{ makroskop. Welle für } \text{die Wolkendichte} \]
• spontane Symmetriebruch
 \[\psi = \begin{cases} 0 & \text{für } T > T_c \\ \pm \psi & \text{für } T < T_c \end{cases} \]
 \[\psi \sim e^{i\theta} \text{ globaler Phasen} \]