\[\phi(r) = \frac{1}{4\pi \varepsilon_0} \int d^3r' \frac{g(r')}{|r-r'|} \]

1.4. Elektrische Multipol-Entwicklung

Betrachte räumlich begrenzte Ladungsverteilung \(g(r') \), in der Umgebung von \(r'=0 \)

Frage: asymptot. Verhalten von \(\phi(r) = \frac{1}{4\pi \varepsilon_0} \int d^3r' \frac{g(r')}{|r-r'|} \)

\[\lim_{r \to 0} \]

Methode: Entwicklung des Integranden in eine Taylorreihe für \(r \gg r' \):

\[G(r-r') = \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} (r', \nabla_r)^l G(r) \]

\[\phi(r) = \sum_{l=\infty}^{l=0} \frac{(-1)^l}{l!} \int d^3r' (r', \nabla_r)^l G(r) g(r') \]

explizit mit \(G(r-r') = \frac{1}{4\pi \varepsilon_0 |r-r'|} \) Entwicklung:
\[\frac{1}{|r-r'|} = \left(r^2 - 2r \cdot r' + r'^2 \right)^{-\frac{1}{2}} = \frac{1}{r} \left(1 - 2 \frac{r'}{r} \cos \theta + \left(\frac{r'}{r} \right)^2 \right)^{-\frac{1}{2}} \]

Durch die für \(r' < r \), \(|r'| < 1 \) konvergente Reihe:

\[\left(1 - 2 \frac{r'}{r} \zeta + \left(\frac{r'}{r} \right)^2 \right)^{-\frac{1}{2}} = \sum_{l=0}^{\infty} \left(\frac{r'}{r} \right)^l P_l (\zeta) \]

Enthält die Legendre-Polynome \(P_l (\zeta) \) definiert

Durch die Ungleichung

\[\sum_{l=0}^{\infty} \left(\frac{r'}{r} \right)^l P_l (\zeta) \]

insbesondere

\[P_0 (\zeta) = 1 \]
\[P_1 (\zeta) = \zeta = \cos \theta \]
\[P_2 (\zeta) = \frac{1}{2} (3 \zeta^2 - 1) = \frac{1}{4} (3 \cos 2\theta + 1) \]

also

\[\phi (\zeta) = \frac{1}{4 \pi \epsilon_0} \frac{1}{r} \int d^3 r' g (r') \sum_{l=0}^{\infty} \left(\frac{r'}{r} \right)^l P_l (\cos \theta) \]

\[= \frac{1}{4 \pi \epsilon_0} \sum_{l=0}^{\infty} Q_l r^{-l-1} \]

mit \(Q_l = \int d^3 r' r'^l g (r') P_l (\cos \theta) \) "\(l \) - Pol"
Entwicklung nach Potenzen von r!

Für stark lokalisierte Ladungsverteilungen ($r' \ll r$) konvergiert die Reihe schnell:

$l=0: \phi^{(0)}(r) = \frac{1}{4\pi \varepsilon_0} \frac{Q_0}{r}$ (Gesamtladung)

fällt am langsamsten ab

\Rightarrow Ladungsverteilung wirkt in großer Entfernung wie Punktladung

$l=1: \phi^{(1)}(r) = \frac{1}{4\pi \varepsilon_0} \frac{P \cdot r}{r^3}$

$Q_1 = \int d^3 r' \delta(r') \rho_0 e \cos \theta = \frac{P \cdot r}{r^2}$

$P = \int d^3 r' \delta(r') r'$ (Dipolmoment)

fällt $\sim \frac{1}{r^2}$ ab,

wichtiger Ter: für insgesamt neutrale Körper ($Q_o = 0$)

Beispiel: 2 Punktladungen $q, -q$ bei x_1, x_2

$\delta(r') = q [\delta(r'-x_1) - \delta(r'-x_2)]$

$Q_o = 0, \quad P = q (x_1 - x_2) = q \alpha$

Feld des Dipolpotenzials:

$E_i = -\frac{1}{4\pi \varepsilon_0} \frac{P \cdot x_k}{r^3} = \frac{1}{4\pi \varepsilon_0} \left(\frac{3 x_i P_k x_k}{r^5} - S_{ik} \frac{P_k}{r^3} \right)$ (Summationskonv. !)

$E_i = \frac{1}{4\pi \varepsilon_0} \frac{1}{r^5} [3 (P \cdot r) r - r^2 P]$

$\sim \frac{1}{r^3}$ für $r \to \infty$
\[l = 2 : \phi^{(2)}(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q_2}{r^3}, \quad Q_2 = \frac{1}{2} \int \int d^3 r' g(r') (r')^2 (3 \cos^2 \theta - 1) \]

\[= \frac{1}{2} \int d^3 r' g(r') \left(\frac{3 r' r}{r^2} - r^2 \right) \frac{x'_k x'_k x'_l}{r^2} \]

\[Q_{kl} \text{ Quadrupolmoment} \]

(spurfreier, symm. Tensor: \[\sum_i Q_{ii} = \int d^3 r' g(r') (3 r'^2 - 3 r'^4) = 0 \])

\[e = \text{ex. orthogonaler Koord.trafo} \]

\[\text{auf Diagonaldarm: } Q_{kk} = 0 \quad (k \neq l) \]

\[Q_{11} + Q_{22} + Q_{33} = 0 \]

\[= \text{nur } 2 \text{ unab} \text{h. Koord.} \]

\[\phi^{(2)}(r) = \frac{1}{4\pi\varepsilon_0} \frac{1}{2r^5} \int d^3 r' g(r') (3 r'^2 - 3 r'^4) \frac{x'_k x'_k x'_l}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{5 Q_{kk}}{2r^5} \sim \frac{1}{r^3} \]

Beispiel: 2 entgegengerichtete Dipole:

1.5. Elektrostati. Feldenergie

Kraft \[E(x) = q \Phi(x) = -q \nabla \phi(x) \]

\[= \nabla (q \phi)(x) \] ist pot. Energie einer Ladung \(q \) in Feld \(E(x) \)
\[W_{ij} = q_i \frac{1}{4 \pi \varepsilon_0} \frac{q_j}{|x_i - x_j|} = W_{ji} \]
pot. Energie

der Ladung \(q_i \) bei \(x_i \) im Pot. der Ladung \(q_j \)
bei \(x_j \).

Gesamte pot. Energie eines Systems von Ladungen \(q_1, \ldots, q_N \):

\[W = \frac{1}{2} \sum_{i \neq j} W_{ij} = \frac{1}{8 \pi \varepsilon_0} \sum_{i \neq j} \frac{q_i q_j}{|x_i - x_j|} \]

Kontinuier. Ladungsverteilung \(\rho(x) \):

\[W = \frac{1}{8 \pi \varepsilon_0} \int d^3x \int d^3\tilde{x} \frac{\rho(x) \rho(\tilde{x})}{|x - \tilde{x}|} \]

\[W = \frac{1}{2} \int d^3x \, \Phi(x) \rho(x) \]

\[\Phi(x) = \varepsilon_0 \nabla \cdot \mathbf{E} \quad \Rightarrow \quad W = \frac{\varepsilon_0}{2} \int d^3x \, \Phi(x) \nabla \cdot \mathbf{E} \]

\[= \frac{\varepsilon_0}{2} \left[\int d^3x \, \nabla \cdot (\Phi \mathbf{E}) - \int d^3x (\nabla \Phi) \cdot \mathbf{E}(x) \right] \]

\[= \frac{\varepsilon_0}{2} \int d^3x \, (\Phi \mathbf{E}) + \int d^3x \, (\varepsilon_0 \mathbf{E}(x))^2 \]

\[\left. \right|_{r \rightarrow 0, \, \varepsilon_0 r^{-2}} \]

\[= \int d^3x \, W(x) \]

Energiedichte des el. Feldes
\[W(x) = \frac{\varepsilon_0}{2} (\mathbf{E}(x))^2 \]
Selbstenergie einer Pkt. Ladung

\[\langle E(r) \rangle = \frac{q}{4\pi \varepsilon_0 r^2} , \quad W(r) = \frac{e_0}{2} \left(\frac{q}{4\pi \varepsilon_0 r} \right)^2 \frac{1}{r^4} \]

Gesamtenergie \(W = \int_0^\infty \int_0^{2\pi} \int_0^{\pi} \ldots \]

\[\frac{1}{r^3} \int_0^{2\pi} \int_0^\pi \int_0^\infty \frac{e_0}{2} \left(\frac{q}{4\pi \varepsilon_0 r} \right)^2 \frac{1}{r^4} \]

\[
\frac{1}{r}(r=0) \to \infty
\]

der Pkt. Ladung

Begriff ist im Widerspruch \[\left\Leftrightarrow \right\]
zumfeldtheoret. Begriff der Energiendichte!