Polarisation = makroskop. Dipoldichte
\[P(r, t) = \frac{i}{\Delta V} \int_{\Delta V} d^3 s \ P_m(r + s, t) \]

Analog:
makroskop. Dipoldichte \[P_m(r, t) = \sum_i p_i(t) \delta(r - r_i) \]
makroskop. Pot. der el. Dipoles \[\phi_m(r, t) = -\frac{i}{4\pi\varepsilon_0} \nabla \left\{ \sum_i \frac{i}{12\pi} \ P_m(t - \frac{r - r_i}{c}) \right\} \]
\[= -\frac{i}{4\pi\varepsilon_0} \int_{\mathbb{R}^3} d^3 r' \nabla \left\{ \frac{i}{12\pi} P_m(r', t - \frac{r - r'}{c}) \right\} \]
makroskop. gemitteltes el. Dipol pot.
\[\phi(r, t) = \frac{i}{\Delta V} \int_{\Delta V} d^3 s \ \phi_m(r + s, t) \]
\[= -\frac{i}{4\pi\varepsilon_0} \frac{1}{\Delta V} \int_{\Delta V} \int_{\mathbb{R}^3} d^3 s \ d^3 r' \nabla \left\{ \frac{i}{12\pi} \frac{P_m(r', t - \frac{r + s - r'}{c})}{r + s - r'} \right\} \]
\[= -\frac{i}{4\pi\varepsilon_0} \int_{\mathbb{R}^3} d^3 s'' \nabla \left\{ \frac{i}{12\pi} \frac{P(r'', t - \frac{r - r''}{c})}{r - r''} \right\} \]
makroskop. Dipoldichte
Umformung:
\[\nabla_r \left\{ \frac{i}{|\mathbf{r} - \mathbf{r}'|} P \left(\mathbf{r}, t - \frac{|\mathbf{r} - \mathbf{r}'|}{c} \right) \right\} = - \nabla_r \left\{ \frac{i}{|\mathbf{r} - \mathbf{r}'|} P \left(\mathbf{r}, t - \frac{|\mathbf{r} - \mathbf{r}'|}{c} \right) \right\} + \frac{1}{|\mathbf{r} - \mathbf{r}'|} \nabla_r P \left(\mathbf{r}, t' \right) \bigg|_{t' = t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}} \]

\[\phi \left(\mathbf{r}, t \right) = \frac{1}{4\pi\varepsilon_0} \int_{\mathbb{R}^3} \nabla_r \left\{ \ldots \right\} \cdot \mathbf{E} \mathbf{d}^3r = 0 \quad (\text{gauss}) \]

\[S_p \left(\mathbf{r}, t' \right) = - \nabla_r P \left(\mathbf{r}, t' \right) \]

\[\text{Polarisation} \quad P = -\varepsilon_0 E_p \]

5.2 Magnetisierung

\(S_p \) ist das mikroskop. Pot. einer ladungsdichte.

\[S_p \left(\mathbf{r}, t' \right) = - \nabla_r P \left(\mathbf{r}, t' \right) \]
(a) Für $B = 0$ vorhandene permanent magnetische Momente werden zur Minimierung der pot. Energie

$$W_{\text{magn}} = -m \cdot B$$

verursachte (gegen die Feld-Bewegung) $\uparrow \rightarrow B$-orientierte (z.B. Bahnum- u. Spinmomente von S_i) → paramagn. Verhalten

(b) Durch B können nach dem Faradayschen Induktionsgesetz wechselnde induziert werden. Lenz'sche Regel \Rightarrow Magnetisierung $\uparrow \rightarrow B$

→ diamagnet. Verhalten

makroskop. gemittelte Felder

makroskop. magnetische Dipolichte $M_m(r,t) = \sum m_i(t) S_i(r-r_i)$

Mittelung über kleines unendliches Vol. ΔV:

$$M(r,t) = \frac{1}{\Delta V} \int_{\Delta V} d^3s \ M_m(r+s,t)$$

Magnetisierung \Rightarrow makroskop. magnetische Dipolichte

Ziel: Ausgang zwischen M und dem effektiven Feldern B in der Metalle.

Zeige, dass eine Magnetisierungstromdichte j_M als Ursache der Felder eingeführt werden kann.
\[\nabla \times B_M = \frac{\mu_0 j}{M} \quad \text{bzw.} \quad \nabla \times M = -\frac{j}{\mu_0} \]

el. Gesamteinleitung (stat. Fall)

\[B' = B + B_M \quad \Rightarrow \quad \nabla \times \left(\frac{1}{\mu_0} B' \right) = \nabla \times \left(\frac{1}{\mu_0} B \right) + \frac{1}{\mu_0} \frac{j}{M} \]

Erzeugung durch freie Ströme:

\[\nabla \times \left(\frac{1}{\mu_0} B' - M \right) = j \]

\[H = \frac{1}{\mu_0} \left(B' - B_M \right) = \frac{B}{\mu_0} \]

Betrachtete Vektorpot. als mikroskop. el. n. magn. Dipole

\(\xi 4.3 \)

\[A_m (r, t) = \frac{\mu_0}{4\pi} \sum_i \left\{ \frac{1}{|r - r_i|} \tilde{P}_i(t - \frac{|r - r_i|}{c}) + \nabla \left(\frac{1}{|r - r_i|} M_i(t - \frac{|r - r_i|}{c}) \right) \right\} \]

el. Dipolmoment magn. Dipolmoment

\[= \frac{\mu_0}{4\pi} \int d^3 \tilde{r} \left\{ \frac{1}{|r - r'|} \tilde{P}_m (r', t - \frac{|r - r'|}{c}) + \nabla \left(\frac{1}{|r - r'|} M_m (r', t - \frac{|r - r'|}{c}) \right) \right\} \]

mikro. el. Dipoldichte magn. Dipoldichte

mikroskop. gemitteltes Pot.:

\[A (r, t) = \frac{1}{\Delta V} \int d^3 \tilde{r} A_m (r + \tilde{r}, t) \]

\[= \frac{\mu_0}{4\pi} \int d^3 \tilde{r} \left\{ \frac{1}{|r - r'|} \tilde{P} (r', t - \frac{|r - r'|}{c}) + \nabla \left(\frac{1}{|r - r'|} M (r', t - \frac{|r - r'|}{c}) \right) \right\} \]

makroskop. Dipoldichten
\[A(x, t) = \frac{\mu_0}{4\pi} \int V \left\{ \frac{1}{|x - x'|} \left(\vec{j}(x', t^{ret}) + \vec{J}_M(x', t^{ret}) \right) \right\} \]

\[\Phi(x, t) = \frac{1}{\epsilon_0} \int V \left\{ \frac{1}{|x - x'|} \left(\vec{\phi}(x', t^{ret}) + \vec{\phi}_p(x', t^{ret}) \right) \right\} \]

5.3. Maxwell-Gleichungen in Materie

Vollständige Pot. enthalten
- freie Ladungs- u. Stromdichten \(\vec{\varphi}, \vec{j} \)
- Polarisation- u. Magnetisierungsbeträge \(\vec{\varphi}_p, \vec{\varphi}_M, \vec{J}_M \)

\[A(x, t) = \frac{\mu_0}{4\pi} \int V \left\{ \frac{1}{|x - x'|} \left(\vec{j}(x', t^{ret}) + \vec{J}_M(x', t^{ret}) \right) \right\} \]

\[\Phi(x, t) = \frac{1}{\epsilon_0} \int V \left\{ \frac{1}{|x - x'|} \left(\vec{\phi}(x', t^{ret}) + \vec{\phi}_p(x', t^{ret}) \right) \right\} \]
A, ϕ sind also Lösungen der inhom. Wellengleichung.

\[\begin{align*}
\Box A(x,t) &= -\mu_0 \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} + \frac{\partial^2 A}{\partial z^2} \right) \quad \text{Lorentz-Eichung} \\
\Box \phi(x,t) &= -\frac{i}{\varepsilon_0} \left(\phi + \phi_p \right)
\end{align*} \]

Für die Felder \vec{E}, \vec{B} in Materie folgt

\[\begin{align*}
\vec{E} &= -\frac{\partial}{\partial t} \vec{A} - \nabla \phi \\
\vec{B} &= \nabla \times \vec{A}
\end{align*} \]

\[\begin{align*}
(1) \quad \nabla \times \vec{E} &= -\frac{\partial}{\partial t} \vec{B} \\
(2) \quad \nabla \cdot \vec{B} &= 0 \quad \text{wie im Vakuum}
\end{align*} \]