\(\psi(\Gamma, t) \)
so dass
\[
d\zeta = \psi(\Gamma, t) \, d\Gamma
\]

Zahl der Mitglieder
der Ensembles, die sich
zu Zeit \(t \) in "Volumenelement" \(d\Gamma \) befinden

\[
d\Gamma = \frac{N}{z} \, dq_1 \, dq_i
\]

Namensgebung
\[
\int d\Gamma \, \hat{\psi}(\Gamma, t) = \int d\zeta = Z
\]

Gesamtzahl der Mitglieder
im Ensemble
(zufällige Abhängigkeit)

Bilde räumliche Verteilungsfunktion

\[
\psi(\Gamma, t) = \hat{\psi}(\Gamma, t)
\]

\[
Z
\]

Mittelwert
\[
\langle A \rangle = \int d\Gamma \ A(\Gamma) \, \psi(\Gamma, t)
\]

"Ensemble mittelwert" (Streuung)
Beachte:
Das Ensemble repräsentiert in einem einzigen Moment die Zeitentwicklung der einzelnen realen Systeme.
Wenn das wirklich so ist, dann gilt
\[
\langle A \rangle_t = \langle A \rangle
\]
Zeitmittel = Ensemblemittel

Das ist die sogenannte Ensemblesphäre!

Voraussetzungen

a) In den Ensemble-Mittelwerten müssen wirklich "zugängliche" Milieu-Zustände mit einbezogen werden, d.h. alle Milieu-Zustände \(\gamma \), die mit molekularphysikalischen Nebenbedingungen verträglich sind.

b) man nimmt an, dass im Zeitmittel auftretenden Phasenraum-Eigenheiten \(\langle \gamma \rangle \) jedes Punktes in Phasenraum "belebt" sind.
Die Entgegenkraft bleibt planmäßig und ist auch meistens erfüllt, aber es gibt Ausnahmen (z.B. Gläser).

I.2. Zeitentwicklung der Plasmaumwelt

Ensemble in Randschirm im Plasmaumwelt

- ähnlich wie Tropfen eine Flüssigkeit

Fragen: Wie ist die Dynamik des Tropfens?

\[
\dot{\rho} = \frac{2}{\Omega(x,t)} \rho \left(1 - \sqrt{\frac{\rho}{\rho(x,t)}}\right)
\]

(bleibt erhalten!)

Folgerung:

Betracht man ein bestimmtes Volumen in Plasmaumwelt, so muß die zeitliche Änderung von \(\dot{\rho} \) in diesem Volumen dem Strom durch die Oberfläche entsprechen.

\[\dot{\rho} \text{ gehört zu} \quad \text{Verhältnisgleichung} \]

Ahnlich Ladungskontur in der E-Bahn

- Konsistenz in einer Stunde
Grenz: \(j = g(\vec{r}, \varepsilon) v \)

\[
\begin{align*}
\nabla &= \hat{\Gamma}(\varepsilon) \\
&= (\hat{\varphi}_i^N, \hat{\varphi}_j^N)
\end{align*}
\]

Kontinuitätsgleichung: Fluss durch die Oberfläche

\[
\frac{\partial \Phi}{\partial t} + \int_{s(t)} j_{t, s} \, ds = 0
\]

\(s(t) \): Zähle den Fluss pro Zeiteinheit in einem Volumen \(V \)

\(s(t) \): Zähle den Fluss pro Zeiteinheit in einem Volumen in Phasenraum geltend

\[
\frac{\partial}{\partial t} g(\vec{r}, \varepsilon) + \nabla \cdot j = 0
\]

\[
\text{mit } j = g(\varepsilon) = \left(\begin{array}{c} g^{\phi_1} \\ g^{\phi_2} \\ g^{\phi_3} \\ g^{\phi_4} \end{array} \right)
\]

Folgerungen aus der Kontinuitätsgleichung
Zunächst explizit ausrechnen:

\[
\frac{\partial}{\partial t} s(n' t) + \sum_{n=1}^{N} \left(\frac{\partial}{\partial q_n} (s q_n) + \frac{\partial}{\partial p_n} (s p_n) \right)
\]

Summe über alle \(f \) Freiheitsgrade

\[
\frac{\partial \phi}{\partial t} = - \sum_{n=1}^{N} \left(q_n \frac{\partial \phi}{\partial q_n} + p_n \frac{\partial \phi}{\partial p_n} \right) \left\{ -V \cdot \tilde{\gamma}_{n} \right\}
\]

\[
- \sum_{n=1}^{N} \left(\frac{\partial q_n}{\partial q_n} + \frac{\partial p_n}{\partial p_n} \right) \cdot \tilde{\nabla} \phi
\]

2. Teil: Benutze Hamilton'sche BWGC

\[
\dot{q}_n = \frac{\partial H}{\partial p_n}, \quad \dot{p}_n = -\frac{\partial H}{\partial q_n}
\]

\[
\Rightarrow \nabla \cdot \tilde{\gamma} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\partial \phi}{\partial q_n} - \frac{\partial \phi}{\partial p_n} \right) = 0
\]

"inkompressible Strömung"

Damit

\[
\frac{\partial s(n' t)}{\partial t} = - \sum_{n=1}^{N} \left(q_n \frac{\partial s}{\partial q_n} + p_n \frac{\partial s}{\partial p_n} \right)
\]
\[
\text{BWCL} \rightarrow
= - \sum_{\mu=1}^{+} \left(\frac{\partial H}{\partial q_\mu} \frac{\partial \rho}{\partial p_\mu} - \frac{\partial \rho}{\partial q_\mu} \frac{\partial H}{\partial p_\mu} \right)
\]

\[
= - 1 \left\{ H, \rho^3 \right\} = \left\{ H, \rho \right\} \quad \text{Poisson Klammern}
\]

\[
\frac{\partial}{\partial \tau} \rho(\Pi, t) = \left\{ H, \rho \right\}
\]

\text{Liouville - Gleichung!}

Bemerkungen:

i) \[
\frac{d}{dt} \rho(\Pi, t) =_{...} = \left\{ H, \rho^3 \right\} + \frac{\partial \rho}{\partial \tau}
\]

\[
= 0
\]

\text{Liouville}

ii) \text{Systeme im statistischen Gleichgewicht:}

\[
\frac{\partial \rho(\Pi, t)}{\partial \tau} = 0 = \left\{ H, \rho \right\}
\]

\text{Liouville}

\text{damit folgt sofort auch}
\[<A> = \int d\Gamma \, g(\Gamma) \, A(\Gamma) \]

(zufallsabhängig (falls auch \(A \) nicht exakt
zufallsabhängig))

bemerk:
Gleichung nicht mehr mit \(\Phi \) absicht, \(\Phi \) ist gar nicht mehr bewegt!

Wahrscheinlichkeiten sind natürlich konstant, aber ihre Verteilung in Ensembles wird zufallsabhängig.

iii) Quantenstatistische Formulierung:
\[g(\Gamma) \rightarrow \text{Dichtefunktion} \quad \tilde{g} = \frac{1}{d} \tilde{g} \]

Ensemble mit \(\tilde{g} \):

\[<A> = \text{Tr} \, \tilde{g} \, \hat{A} \]

Entwicklung:
\[\frac{\partial \tilde{g}}{\partial t} = \frac{i}{\hbar} [\tilde{g}, \hat{H}] \]

von Neumann-Gleichung
I.3. Das mikrokanonische Ensemble

Definiert ein "isoliertes System"
-system, welches vollkommen isoliert ist von
-nen Umgebungs-

-Kein Wärmestrom
-Keine Teilchenaustausch
-Kein Materietransport

Energie $E = \text{const}$
Volumen $V = \text{const}$
Teilchenzahl $N = \text{const}$

\Rightarrow Definition des mikrokanonischen Ensembles

Postulat
In einem isolierten System hat jeder Mikrozustand mit festen Energie E die gleiche Wahrscheinlichkeit:

$S_{mk}(\Gamma) = \frac{1}{\Omega} \delta \left(E - H(\Gamma) \right)$

(mikroskopische Hamilton-Funktion)

(Delta-Funktion)
\[S = \frac{1}{h^3 N!} \int d^n \sigma \delta (E - H(\sigma)) \]

"Summe" über alle Milieuzustände
Zur vorgegebenen Energie \(E \)

\[d^n \tau = d\tau_1 ... d\tau_p \quad dp_1 ... dp_n \]

\(\frac{1}{N!} \): Berücksichtigung der Zahl der Möglichkeiten, Koordinaten und Impulse von Teilchen derselben Art auszuwählen

\(\frac{1}{h^3 N} \): Berücksichtigung der Tatsache, dass

\[\mathcal{S} \] dimer aufgebautes sein soll

Definition der Entropie im Gleichgewicht

\[S = k_B \ln \Omega \quad \text{Boltzmann} \]

Druck Tiefen ist Zentral, um die Entropie eines Systems berechnen auf der mikroskopischen Ebene zu bekommen.

normal Betrachtung zur Verteilungsfunktion:
$$s_{nu} (\tau) = \frac{1}{2} \delta (E - \hbar \nu \tau) \rightarrow \int d\tau' s_{nu} (\tau')$$

$$= \frac{\int d\tau' \delta (E - \hbar \nu \tau')}{\hbar^3 \nu^3} \rightarrow \frac{E^2}{\hbar^3 \nu^3}$$

$$\langle A \rangle_{nu} = \frac{\int d\tau' s_{nu} (\tau') A (\tau')}{\sqrt{\int d\tau' s_{nu} (\tau')}}$$

$$= \frac{1}{\hbar^3 \nu^3} \sqrt{\int d\tau' A (\tau') s_{nu} (\tau')}$$