3. Maxwellgleichungen -

Eine Ableitung über Eichfelder

Maxwellgleichungen als Bezugsbedingungen der elektromagnetischen Felder

Abbildung über Lagrange gleichungen f. Felder

3. 1. Lagrangegleichungen f. Felder

3. 1. 1. Ermittlung der Felder

Teilchen: Lagrange Funktion \(L(q_i, \dot{q}_i) \)

Lagrangegleichungen: \(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} = \frac{\partial L}{\partial q_i} \)

→ Teilchenbahn durch Gleichung \(\ddot{q}_i = f(q_i) \)

Impulsaufgaben: \(p_i = \frac{\partial L}{\partial \dot{q}_i} \rightarrow [q_i, p_i] = 0 \) i.d.R.
3.12. Weishaupt's Field

\[S = \int dt \int d^3 \mathbf{r} \quad (S \text{ wirg.}) \]

Teiler

1. Felds + Erhalt: \(Y_i \): Feld, Feldkomponente \(i = x, y, z \)

\[S = \int dt \int L (Y_i, \partial_t Y_i, \partial_x Y_i, \partial_y Y_i, \partial_z Y_i) \]

\(Y_i (\mathbf{r}, t) \)

\(\partial_t Y_i \)

1. Felds, \(\partial_x Y_i \)

\[t \rightarrow \tau, \mathbf{r} \]

\[S = \int dt \int d^3 \mathbf{r} \quad L (Y_i, \partial_t Y_i, \partial_x Y_i, \partial_y Y_i, \partial_z Y_i) \]

Ein feste Ort, analyt \& Zeit in der Themen voll \(Y(t, \mathbf{r}) : \mathcal{L} \equiv \text{Komp. dichte} \)

in Analogie zur Kravitz: \(\nabla \cdot \nabla S = 0 \)

Wirig und fi Felder erhalten!
3.1.3. Lagranges feldgleichungen

\[S = \int dt \int d^3x \mathcal{L}(y^0, \dot{y}^0, \ddot{y}^0, \dddot{y}^0, \dot{\delta y}^0, \ddot{\delta y}^0, \dddot{\delta y}^0) \]

\[\dot{y}^0 = \text{vektorfeld} \quad \delta y^0 \approx \text{kanonische variablen} \quad \text{mit Taylorreihe} \]

\[S = S_0 + \int dt \int d^3x \left(\frac{\partial \mathcal{L}}{\partial \dot{y}^0} \delta \dot{y}^0 + \frac{\partial \mathcal{L}}{\partial \ddot{y}^0} \delta \ddot{y}^0 + \frac{\partial \mathcal{L}}{\partial \dddot{y}^0} \delta \dddot{y}^0 \right) \]

\[S_0 = \int dt \int d^3x \mathcal{L}(y^0, \dot{y}^0, \ddot{y}^0, \dddot{y}^0) \]

\[\delta S - \delta S_0 = 0 = \int (\cdots \delta \dot{y}^0) \]

bei der partiellen zeitkoordinatenänderung \(\dot{y}^0 \) ändert sich "Kinetic" auf Reaktionsniveau.

denn dies Unabhängigkeit der \(\dot{y}^0, \ddot{y}^0 \rightarrow \dot{\delta y}^0 \)

\[\frac{\partial \mathcal{L}}{\partial \dot{y}^0} = \frac{\partial \mathcal{L}}{\partial \dot{y}^0} \frac{\partial \dot{y}^0}{\partial \dot{y}^0} + \frac{3}{2} \frac{\partial \mathcal{L}}{\partial \ddot{y}^0} \frac{\partial \ddot{y}^0}{\partial \dot{y}^0} \]

\[\frac{\partial \mathcal{L}}{\partial \dddot{y}^0} = \frac{\partial \mathcal{L}}{\partial \dddot{y}^0} \]

Lagranges feldgleichung
3.1.4. Rätsel mit un die Copypaste

Ich wende, dass der Text ist irrelekt.

You have to fiddle around = rate + #nolke

Fügen man

Ich: man bestellt den Text, dass die richtige Hilfe kommt.

Bep: kein Schichtfehler $\frac{1}{4}, \frac{1}{4}$

$$L = \frac{i}{2} \left(\gamma^* \gamma \theta \gamma - \gamma \gamma^* \gamma \right) - \frac{i}{2} \sum_{\sigma \in \{\pm \}} \{\gamma \gamma^* \gamma \gamma \} (2\pi \gamma)$$

$\gamma (\theta \gamma)$, $\gamma^* (\theta \gamma)$

Bem.: der Schichtfehler gibt: $\gamma = \gamma^*$, $\gamma \neq \gamma$

$$\frac{\partial L}{\partial \gamma^*} = \frac{i}{2} \gamma \theta \gamma - \gamma \gamma^*$$

$$\frac{\partial L}{\partial \gamma} = -\frac{i}{2} \gamma$$

$$\frac{\partial L}{\partial \gamma} = \frac{1}{2} \sum_{\sigma \in \{\pm \}} \{\gamma \gamma^* \gamma \gamma \} (2\pi \gamma)$$
\[i \hbar \partial_\xi \psi = \left(-\frac{\hbar^2}{2m} \Delta + V \right) \psi \]

3.7. Das elektromagnetische Feld als Einführung

Einführung: \(\xi \rightarrow \xi' \)

 Transformiert wird mit der Physik

 \(\xi' = \text{konst} \)

...was passiert \(\xi' = \xi', \bar{\varepsilon}_1 + \bar{\varepsilon}_2 \)?

...würde \(\xi' = \frac{\xi}{\xi} \)

\[i \hbar \partial_\xi \left(\psi e^{i \xi x} \right) = \left(\frac{1}{2m} \left(\frac{\hbar^2}{\xi^2} \right) + V \right) \psi e^{i \xi x} \]

\(\psi \bar{\varepsilon}_1 + \psi \bar{\varepsilon}_2 \)

duce für...
\[\frac{\partial}{\partial t} \psi(x, t) = \left\{ \frac{i}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial}{\partial x} \frac{\partial}{\partial x} \right) \right\} \psi(x, t) \]

\[u, v = f(x, t) \]

→ Physikalisch sinnvoll!

um das zustande zu kommen, führt vorübergehend in der Theorie zu:

\[\mathbf{A} : \text{Vektorpotential} \]
\[\phi : \text{Skalarpotential} \]

führen: \[\gamma \rightarrow \gamma e^{i \phi} \]

\[\mathbf{A} \rightarrow \mathbf{A} + \nabla \phi \]
\[\phi \rightarrow \phi - \partial_t \gamma \]

Einfaches Fundament-\&Falle

Die Schrödinger-Gleichung bleibt in variiert, wenn man \(\mathbf{A}, \phi \) als neue physikalische Felder in Schrödinger-Gleichung einführt.
Schrödinger Gleichung: $i \hbar \partial_t \psi = H \psi$

Schrödinger geladene Teilchen in elektromagnet. Feld

$$i \hbar \partial_t \psi = \left(\frac{1}{2m} \left(\frac{-i}{\hbar} \nabla - q \vec{A} \right)^2 + u + q \phi \right) \psi$$

wenn Teilchen gegeben wird und

ein Feld \vec{E} und \vec{B} transformiert wird.

Feld: Elektr. Feld \vec{E} und \vec{B} transformiert.

3.3. Trieb: Herleitung Feldgleichung (Maxwellgleich.)

Herleitung der Feldgleichung (Maxwellgleich.)

Ziel: Herleitung der Feldgleichung (Maxwellgleich.)

des \vec{E} und \vec{B}

\vec{E} und \vec{B} sowie ϕ

L. f. Schrödinger ist $L(E)$ der erste Term.

friese Feld \vec{A} hat $\partial \phi$ ohne \vec{E}

Bedingungen:

- In konstanter Felder sollen auch ψ \vec{A} sein.

Feld $\vec{E} = (E_x, E_y, E_z)$ will $\partial \phi$ \vec{A}
\[E_x = \partial_x \phi + \partial_t A_x \]
\[B_x = \partial_y A_y - \partial_t A_x \]

ist sinngemäß auch v. gr. als in der Theorie aufgefaßt solange

- quadratische Form in der Variable

\[L_F = (\vec{E}, \vec{B} + \text{quadratisch}) \]

\[L_F = \frac{\varepsilon_0}{2} \sum \left(\partial_t \phi + \partial_t A_i \right)^2 - \frac{1}{2\mu_0} \sum_k \left(\sum_{ij} \varepsilon_{ij} \partial_i \phi \partial_j \phi \right)^2 \]

Lagrange-dichte d. freie Maxwell Feld

3.4. Ableitung der gelösten Feld-Maxwell gl"{a}tze.
Zusammensetzung aller L's:

\[
L = \frac{i\hbar}{2} \left(\gamma^\ast \gamma_0 \gamma - \gamma \gamma_0 \gamma^\ast \right) \text{ für Li-Serie} = \frac{i\hbar}{2} \gamma \quad \leftarrow \text{potentielle Energie von } \gamma \text{ in } \phi
\]

\[+ \frac{1}{2\alpha} \left(\frac{\varepsilon_0}{c} \nabla + \gamma^\ast \gamma \right) \gamma^\ast \quad \text{ikx}^\ast
\]

\[+ \frac{1}{2} \varepsilon_0 \left(\varepsilon_0 \left(A_{ik}^2 + \phi_0^2 + \frac{1}{2} \phi_0 A_{ik} \right) \right) \left(\frac{\varepsilon_0}{c} \nabla - \gamma \right)
\]

\[- \mu_0 \left(\frac{\varepsilon_0}{c} \nabla \right)^2 \]

\[\left(\frac{\varepsilon_0}{c} \nabla - \gamma \right) \]

und hilft die Lorentz-Gleichung weiter, dass

\[
\frac{\partial L}{\partial \gamma} = \frac{\varepsilon_0}{c} \frac{\partial L}{\partial \gamma} + \sum_i \frac{1}{2} \frac{\partial L}{\partial \gamma_i} \text{ der gekoppelte Feld-Materie-Plädge}
\]
3 Felder $\gamma \to$ Schöpfung.

$A_{x}, A_{y}, A_{z} \to$ Wellen-Ph. f. Elektro-geodis.

$\phi \to -\alpha - f. skal. Pot. f. Feld / Potenziol.

$\frac{\partial \phi}{\partial t} + \sum_{i} J_{i} \cdot \Phi_{i} = -q \frac{\textbf{E}}{\varepsilon_{0}}$

$q \frac{\text{d}l^{2}}{\text{d}x} = \varepsilon_{0} \textbf{D} \cdot \textbf{E}$
\[\nabla \cdot E = \frac{\rho}{\varepsilon_0} \]

Ode in Potential:

\[\Delta \phi = -\frac{\rho}{\varepsilon_0} - \nabla \cdot \mathbf{A} \]

\[-\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} \]

b) Ampere's 1st Kelvin Problem

\[\frac{\partial \mathbf{A}}{\partial t} = \cdots \]

\[C = \frac{1}{\varepsilon_0 \mu_0} \]

Wire problem in Magnetic Fields

\[\omega_1 \mathbf{a} = \frac{q}{2\pi} \gamma^x \left(\frac{\varepsilon_0}{\mu_0} \mathbf{a} - q \mathbf{A} \right) \gamma + \text{e} \]

Ode in Potential:

\[-\nabla \times \nabla \times \mathbf{A} - \frac{\partial}{\partial t} \left(\frac{1}{c^2} \mathbf{A} \right) = \frac{\mu_0}{c^2} \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} \]
\(\mathbf{A} = \mathbf{B} \times \mathbf{C} \)