3. 4 Harte - Fock in second quantizalen

Eff. 1-particle operator:

$\hat{H}_{\text{eff}} = \sum_{\mu = 1}^{\infty} \left[\langle \chi_\mu | \hat{\mathcal{H}} | \chi_\mu \rangle - \langle \chi_\mu | \hat{\mathcal{V}} | \chi_\mu \rangle \right]$

• $\langle a_\mu^+ a_\mu^+ a_\mu a_\mu \rangle$

Hartree solution:

ansatz: $|\phi\rangle \rightarrow \hat{H}_{\text{eff}} \rightarrow \text{Schrödinger eq.}$

mean-field decoupling:

$\langle a_\chi^+ a_\mu^+ a_\chi a_\mu \rangle \approx$ $\langle a_\mu^+ a_\mu \rangle a_\chi a_\chi + \langle a_\mu^+ a_\mu \rangle a_\chi a_\chi S_{\chi \mu}$

$+ \langle a_\chi^+ a_\chi \rangle a_\mu^+ a_\mu S_{\chi \mu}$

$- \langle a_\chi^+ a_\chi \rangle a_\mu^+ a_\mu S_{\chi \mu}$

$+ \langle a_\chi^+ a_\chi \rangle a_\mu^+ a_\mu S_{\chi \mu}$

$- \langle a_\chi^+ a_\chi \rangle a_\mu^+ a_\mu S_{\chi \mu}$

Bloch's Theorem

Die Eigenfunktionen des Hamiltonoperators
\[H = -\frac{\hbar^2}{2m} \Delta + V(\varepsilon) \quad \text{mit} \quad V(\varepsilon + \mathbf{R}) = V(\varepsilon) \]

für alle Bravais-Gittervektoren \(\mathbf{R} \) (Austeraum) können gewählt werden als:

\[\Psi_{\mathbf{k}}(\varepsilon) = e^{-i \mathbf{k} \cdot \mathbf{R}} \quad (\text{Bloch-Funktion}) \]

mit \(u_{\mathbf{k}}(\varepsilon + \mathbf{R}) = u_{\mathbf{k}}(\varepsilon) \) (periodische Äquivalenz)

\[\Rightarrow \text{Eigenfunktionen haben gleiche Periodizität wie das Raumgitter} \]

\[(=) \quad \Psi_{\mathbf{k}}(\varepsilon + \mathbf{R}) = e^{-i \mathbf{k} \cdot \mathbf{R}} e^{i \mathbf{k} \cdot \mathbf{R}} u_{\mathbf{k}}(\varepsilon + \mathbf{R}) = e^{i \mathbf{k} \cdot \mathbf{R}} \Psi_{\mathbf{k}}(\varepsilon) \]

Beweis:

1. Definiere Translationsoperator \(T_{\mathbf{R}} \Psi(\varepsilon) = \Psi(\varepsilon + \mathbf{R}) \)

 \(\Rightarrow [T_{\mathbf{R}}, H] = 0 \),

 weil \(T_{\mathbf{R}} H \Psi(\varepsilon) = H(\varepsilon + \mathbf{R}) \Psi(\varepsilon + \mathbf{R}) = H(\varepsilon) \Psi(\varepsilon + \mathbf{R}) = H(\varepsilon) T_{\mathbf{R}} \Psi(\varepsilon) \)

 \(\text{Bem.: Aufgrund von periodischem Spacebound gilt.} \)

\[\Rightarrow \text{Die Bravais-Translationsoperatoren bilden eine abelsche Gruppe mit} \]

\[T_{\mathbf{R}} T_{\mathbf{R}'} = T_{\mathbf{R} + \mathbf{R}'} = T_{\mathbf{R}} T_{\mathbf{R}'} \]
2. Also gilt es ein gemeinsames System von Eigenzuständen zu finden, \(\forall \lambda \)

\[H\varphi = E\varphi \]

\[T_{\lambda}\varphi = c(\lambda)\varphi \]

Es gilt: \(T_{\lambda} T_{\lambda'} \varphi = c(\lambda) T_{\lambda'} \varphi \)

\[= c(\lambda) c(\lambda') \varphi \]

\[= T_{\lambda + \lambda'} \varphi = c(\lambda + \lambda') \varphi \]

\[\rightarrow \text{also} \quad c(\lambda + \lambda') = c(\lambda) c(\lambda') \quad (\ast) \]

3. Normierung:

\[\int d^3\tau \left| \varphi(\tau + R) \right|^2 = \frac{1}{c(\lambda)^2} \int d^3\tau \left| \varphi(\tau) \right|^2 \]

\[\Rightarrow c(\lambda)^2 = 1 \]

• Anzahl: \(c(\lambda) = e^{i\alpha(\lambda)} \quad , \quad \alpha \in \mathbb{R} \)

• Aus (\ast) folgt: \(c(\lambda + \lambda') = e^{i\alpha(\lambda + \lambda')} = e^{i[\alpha(\lambda) + \alpha(\lambda')]} \)

\[\Rightarrow \alpha(\lambda) = \lambda \cdot R \]
linear Funktion mit noch unbestimmtem k, $k \in \text{Raum der reziproken Gitter}$

\[\phi(k + R) = e^{ik \cdot R} \phi(x) \]

Ansatz: $\phi(x) = e^{ik \cdot x} u(x)$

\[\phi(x + R) = e^{ik \cdot (x+R)} = e^{ik \cdot x} e^{ik \cdot R} u(x+R) \]

\[= e^{ik \cdot x} \overbrace{u(x)}^{= \phi(x)} \]

(alt. 2. Beweis: Mermin, Arbeits: Festkoerperphysik, Kap. 8)

Born-von Karman Randbedingung

(by-klinische Fortsetzung des Grundgebietes)

\[\phi(x + N_i a_i) = \phi(x) \]

\[\text{mit } i = 1, 2, 3 \]

\[N_i = N_4, N_5, N_6 \in \text{Zahlen der Elementarzellen im Grundgebiet} \]

kein Phasenfaktor aus Grund RB!

Bloch'sche Theorem:

\[\phi_{N_i}(x + N_i a_i) = e^{i\mathbf{N}_i \cdot \mathbf{a}_i} \phi_{N_i}(x) \]

\[= e^{i\mathbf{k} \cdot \mathbf{a}_i} = 1 \]
mit \(k = \sum_{j=1}^{3} m_j g_j \) (\(g_j \) = Basis der reziproken Gittervektoren: \(g_j a_i = 2\pi S_{ij} \))

ergeben sich als zulässige \(k \)-Werte:

\[\sum_{j=1}^{3} N_j m_j g_j a_i = 2\pi h_i \]

\[\Rightarrow k = \frac{h_1}{N_1} g_1 + \frac{k}{N_2} g_2 + \frac{l}{N_3} g_3 \]

mit \(h, k, l \in \mathbb{Z} \) Millerischen Indizes

Bemerkungen

(i) Kristallelektronen ("Blochlektroden") werden durch gitterperiodisch modulierte, abnorme Wellen dargestellt:

- Für \(V = 0 \): \(\psi(x) \sim e^{ik \cdot x} \)
 mit \(k \) als Impuls-eigenwert \([\rho, H] = 0 \)

- Für \(V \neq 0 \):
 \(\psi_{nk}(x) = e^{ik \cdot x} u_{nk}(x) \) sind keine Impuls-eigenzustände \([\rho, H] \neq 0\)

- \(h \neq k \): Kein stell im Impuls
(ii) $\Psi_{nk}(x)$ ist periodisch bzgl. k auf dem reziproken Gitter

$$T_R \Psi_{nk + G}(x) = e^{i(k+G) \cdot R} \Psi_{nk}(x)$$

$$\quad e^{iG \cdot R} = 1 = e^{ik \cdot R} \Psi_{nk + G}(x)$$

d.h. $\Psi_{nk + G}$ ist Eigenfunktion von

T_R zum gleichen Eigenwert $e^{ik \cdot R}$

$\Rightarrow \Psi_{nk + G} = \Psi_{nk}$

(allen $k + G$ sind äquivalent zu k)

\Rightarrow Beschränkte Betrachtung auf 1. Brillouin-Zone!

(iii) **Energie-Eigenwert**

$E_n(k)$ ist periodisch bzgl. k

$$E_n(k + G) = E_n(k)$$

Für jedes k hat $E_n(k)$ ein diskrethes Spektrum ($n = 1, 2, \ldots$)
Bandindex n:

\[\psi_{nk}(x) = e^{ikr} u_{nk}(x) \] einzusetzen in $H_{nk} - E_n(k) u_{nk}$:

\[(-\frac{\hbar^2}{2m} \Delta + V(x)) e^{ikr} u_{nk}(x) \]

\[= e^{ikr} \left[-\frac{\hbar^2}{2m} \Delta + V(x) + \frac{\hbar^2}{im} k \cdot \nabla + \frac{\hbar^2 k^2}{2m} \right] u_{nk}(x) \]

\[= e^{ikr} \left[\frac{1}{2m} \left(\hat{\rho} + \frac{\hbar^2}{im} k \cdot \nabla \right)^2 + V(x) \right] u_{nk}(x) \]

\[\frac{1}{H(k)} \]

\[= E_n(k) e^{ikr} u_{nk}(x) \]

\[\text{d.h.} \quad H(k) u_{nk} = E_n(k) u_{nk} \]

ist Eigenwertgleichung für $u_{nk}(k \text{ fort})$

zu $\text{RB:} \quad u_{nk}(x + R) = u_{nk}(x)$
(iv) Bandstrukturen

\[E_n(k) \] beschreibt kontinuierliche Energiebanden

1. Brillouin-Zone

(v) Es gilt \[E(k) = E(-k) \]
(\(\Rightarrow \) Kramersche Theorem)

\[E_n(k) = E_n(-k) \]

\[T_R \psi_{nk}^* (x) = e^{-i \frac{\pi}{a} R} \psi_{nk}^* (x) \]

\[T_R \psi_{n,-k} (x) = e^{i \frac{\pi}{a} R} \psi_{n,-k} (x) \]

wegen Hermitizität von \(\hat{A} \):

\(\psi_{nk}^* \) und \(\psi_{nk} \) sind zueinander bezüglich \(\hat{A} \)

\(\rightarrow E(-k) = E(k) \)

(vi) Kristalloptiken sind Quantenteilchen, die die Wannier mit dem
<table>
<thead>
<tr>
<th></th>
<th>Freie Elektronen</th>
<th>kristallelektronen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellenfunktion</td>
<td>$\psi(k)$</td>
<td>$\psi_{hk}(\vec{r})$</td>
</tr>
<tr>
<td>Eigenwerte</td>
<td>$\frac{\hbar^2 k^2}{2m}$</td>
<td>$E_n(k)$:</td>
</tr>
<tr>
<td>Impuls \mathbf{p}</td>
<td>$\hbar \mathbf{k}$</td>
<td>Bandstruktur</td>
</tr>
<tr>
<td>$\frac{1}{m^2} \frac{\partial^2 E}{\partial k_i \partial k_j}$</td>
<td>$\frac{1}{m} \delta_{ij}$</td>
<td>Tensor der inverse effektive Masse</td>
</tr>
<tr>
<td>Erzeuger-Operator</td>
<td>α_k</td>
<td>$+\alpha_k$</td>
</tr>
</tbody>
</table>

(vii) WW dieser Quasi-Teilchen unabhängig kann so behandelt werden, wie für freie Elektronen gezeigt wurde (Harree-Fock)