Quantum dot (QD) lasers display low feedback sensitivity in comparison to quantum well (QW) lasers. This advantageous dynamical behavior is ascribed to their smaller phase-amplitude coupling that is expressed in small linewidth enhancement factors Γ. Therefore QD lasers are excellent candidates for directly modulated lasers needed for future telecom applications. We investigate the complex dynamics of a semiconductor QD laser subject to optical feedback from a distant mirror. In dependence of the feedback strength we obtain complex bifurcation scenarios for the intensity of the emitted laser light.

Microscopic QD model combined with Lang-Kobayashi like field equation

- Turn-on dynamics
 - Response of photon density n_{ph} to current pulse with feedback ($K = 0.96$) and without feedback ($K = 0$).

- Equation of motion for electrical field amplitude
 - Total field $\mathcal{E}(t) = \mathcal{E}(t)e^{j\omega t}$ normalized: $\mathcal{N}_{ph}(t) = \mathcal{N}_{ph}(0)e^{j\omega t}$
 - $\mathcal{E}(t) = (1 - \frac{1}{2}) \left(\mathcal{E}^{\text{wall}}(t) + \mathcal{E}^{\text{ext}}(t) - j2\pi \frac{\mathcal{N}_{ph}(t)}{\mathcal{N}_{ph}(0)} \right)$

- External Cavity Modes (ECMs)
 - Rotating wave ansatz: $\mathcal{E}(t) = \mathcal{N}(t) e^{j\omega t}$
 - Equation for frequency deviations: $\Delta \omega_{ph} = \frac{\chi}{\mathcal{N}_{ph}(0)} \left[1 + \frac{1}{2} j \mathcal{N}_{ph}(t) - \frac{\mathcal{N}_{ph}(t)}{\mathcal{N}_{ph}(0)} \right] + \mathcal{N}_{ph}(t)\dot{\mathcal{N}}(t) + j \mathcal{N}_{ph}(t)\dot{\mathcal{N}}(t)$

- ECMs in dependence of K are created pairwise in saddle-node bifurcations (Γ_0).

Rate equations for QD laser [LUE09]

$$\frac{d}{dt} N_{QD} = -2\alpha N_{QD} + \Delta N_{QD} + \beta N_{QD}$$

- $K = 0.123$

First laser instability at K_c

- Laser loses stability in a Hopf bifurcation at the critical feedback strength K_c. K_c is plotted as a function of the α- and the Γ-factor.

Dependence of K_c on α-factor

- Analytical expression for lowest bound of K_c at which first ECM loses stability [LEV95]:
 - $K_c = \alpha$ (red line in (iii))

- K_c decreases with increasing α-factor.

- QW lasers are more sensitive to optical feedback than QD lasers.

Dependence of K_c on Γ-factor

- Parabolic shape of K_c as function of Γ is due to two competing processes [LEV95]:
 - 1. K_c decreases with increasing carrier lifetimes $\tau_\text{c}(\Gamma) = \frac{1}{\Gamma_0^2 + \Gamma_0^2}$
 - 2. K_c increases with differential gain ΔN_{QD} and thus with Γ-factor.

Conclusion

- Combining a Lang-Kobayashi like field equation with microscopically based carrier rate equations, we can explain the reduced feedback sensitivity found in QD devices by the relatively small number of ECMs in comparison to QW devices.

- The small number of ECMs originates from a weaker phase amplitude coupling in QD laser that is modeled by smaller α-factors.

References

Institut für Theoretische Physik, Technische Universität Berlin

Mail: otto@itp.tu-berlin.de

Web: http://www.itp.tu-berlin.de/schoell/