TU Berlin

Collaborative Research Center 910Computing a Heart Beat A Simulation-based Approach towards Understanding Total Cardiac Function

SFB logo

Page Content

to Navigation

Computing a Heart Beat
A Simulation-based Approach towards Understanding Total Cardiac Function


Despite the overwhelming wealth of biological data available today, gaining mechanistic insight into cardiac function remains to be a challenging endeavor. In no small part, this is due to the multiscale/multiphysics nature of cardiac function which is governed by complex interactions of processes, arising within and across levels of biological organization, as well as between electrical, mechanical and fluidic systems. Considering the prevalence of cardiac disease, a better understanding of the underlying physical mechanisms is of pivotal importance.

Computer models are increasingly becoming an indispensable adjunct to experimental studies as they provide a powerful quantitative framework for the integration of experimental data and allow for a careful analysis of complex cause-effect relationship across different spatial scales and physics. Owing to recent advances in medical imaging, refined experimental techniques and numerical techniques in silico models became extremely high dimensional to capture both anatomical structure and physiological function at a high level of detail. Currently such detailed models are evaluated as an additional clinical modality. It is believed that modeling is able to provide additional complementary data which are not directly accessible to experimental observation.

In this talk an overview is given on recent methodological developments in terms of model building and numerical methods for coupled electro-mechanical models of the heart. Modeling applications will be presented focusing on i) formation and maintenance mechanisms of cardiac arrhythmias; ii) treatment of arryhtmias by electrical defibrillation therapy and therapeutical optimizations based on optimal control theory; and iii) models for elucidating electro-mechanical disease mechanisms such as heart failure and mechanically triggered arrhythmias.


Quick Access

Schnellnavigation zur Seite über Nummerneingabe