Biophysical Journal Volume 105 October 2013 191591924 1915

A Bacterial Swimmer with Two Alternating Speeds of Propagation
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ABSTRACT We recorded large data sets of swimming trajectories of the soil bacterium Pseudomonas putida. Like other
prokaryotic swimmers, P. putida exhibits a motion pattern dominated by persistent runs that are interrupted by turning events.
An in-depth analysis of their swimming trajectories revealed that the majority of the turning events is characterized by an angle of
¢1! 180" (reversals). To a lesser extent, turning angles of ¢, ! 0" are also found. Remarkably, we observed that, upon a
reversal, the swimming speed changes by a factor of two on averageNa prominent feature of the motion pattern that, to our
knowledge, has not been reported before. A theoretical model, based on the experimental values for the average run time
and the rotational diffusion, recovers the mean-square displacement of P. putida if the two distinct swimming speeds are taken
into account. Compared to a swimmer that moves with a constant intermediate speed, the mean-square displacement is strongly
enhanced. We furthermore observed a negative dip in the directional autocorrelation at intermediate times, a feature that is only
recovered in an extended model, where the nonexponential shape of the run-time distribution is taken into account.

INTRODUCTION

Among the fundamental modes of motility in biological sembled and a new swimming direction is randomly
systems, bacterial swimming is one of the most prominenselected from the tumbling process with a preferred turning
examples (). Itis central to a wide range of biological func- angle of ~70. This results in the typical run-and-tumble
tions, including processes as diverse as intestinal functionswimming pattern, where periods of persistent displacement
the spreading of infections, or the early stages of biobImand reorientation events alternate. In response to external
formation @). Swimming bacteria propel themselves with chemical cuesk. coli cells are able to adapt their tumbling
the help of Bagella. A Bagellum is composed of a helicalfrequency to bias their direction of motion toward or away
bPlament that is connected via a hook to a rotary motorfrom a chemical source, a phenomenon known as chemo-
The motor is embedded in the cell wall and drives the rotataxis (L0).
tion of the bPlamentd). The swimming pattern and motion  In contrast, species that are decorated with a single polar
parameters depend on the number and distribution of th&agellum are, in many cases, restricted to a much simpler
Bagella across the cell body. In particular, we distinguishrun-and-reverse pattern of motion. Depending on the helic-
the polar arrangement of a single Ragellum at one end oity of the blament and the sense of rotation of their Bagellar
the cell (monotrichously Ragellated) from a tuft of several motor, they either move in a pushing mode, where the Ragel-
Ragella at one end of the cell (lophotrichous arrangement)um is oriented backward and drives the cell body from
and a uniform distribution of several Ragella across thebehind, orin a pulling mode, where the Ragellum is oriented
cell body (peritrichous arrangement)) ( in the swimming direction and pulls the cell body forward.
The most thoroughly studied prototypical example of aBy changing the rotary direction of their motor, monotri-
bacterial swimmer is the enteric bacteriuBscherichia chously Ragellated bacteria can switch from pushing to
coli (5). The rod-shaped cells of ~2m in length are uni- pulling mode and vice versa, thereby reversing their swim-
formly covered with Ragella that may extend several bodyming direction by 180. In this case, a reorientation to other
lengths out into the surrounding. Rotation of the helicalswimming directions can be achieved only by deviations
plaments drives the swimming motility of these cells from the turning angle of a perfect reversal (1g@and by
(6,7). During counterclockwise rotation of the Ragellar rotational diffusion during the straight runs. Numerous ex-
motors, the helical Plaments form a coherent bundle thaamples of run-and-reverse swimming can be found among
pushes the cell forwardj. If one or more motors change the marine bacterial(l). For examplePseudoalteromonas
to clockwise rotation, the bundle Ries apart and the persishaloplanktisandShewanella putrefaciemely on this swim-
tent mode of swimming ends in a tumbling eve®it Ouring  ming pattern to achieve chemotactic tracking of individual
tumbling, the cell body rapidly reorients. Once the motorsmoving algae {2,13.
resume counterclockwise rotation, the bundle is reas- Recent work has demonstrated that bacteria with a
single polar Ragellum can also exhibit more-complex swim-
ming patterns. For example, the marine bacteriuitrio
Submitted April 2, 2013, and accepted for publication August 22, 2013. alginolyticus may execute an additional Ricking motion
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run-and-reverse patterny. alginolyticusfollows a cyclic  shaking culture were diluted with N-Medium to an optical density of 0.01

three-step swimming protocol (run-reverse-Rick): a forward(©b600 BioPhoto_meter;7 Eppendorf, Hamburg, Germany), corresponding
run is followed by a reversal of the swimming direction, '© & number density of Zeells per mL.

When switching back to forward motion, the Ragellum

RBicks to select a new swimming direction. Ip thg presencegetup and imaging

of chemoattractants, the run times of the swimming pattern

are adapted so that alginolyticuscan rapidly respond and To perform time-lapse recordings of swimming bacteria, the diluted cell

. . L suspension was Plled into a transparent microchannel, measuring 1 mm
localize chemoattractant sources in its vicini/(13. in width, 17 mm in length, and 40m in height @-Slide VI 0.4; Ibidi,

!n this W_Ol'k' we investigate th? S"_Vimming Pattem_Of the Martinsried, Germany). After 5 min, an initial population of isolated cells
soil bacteriumPseudomonas putidéike E. coli, P. putida  had attached to the glass bottom of the channel, and the channel was sealed
carries several Ragella. However, they are not evenly disat the sides with a Male Luer Lock Connector (natural polypropylene;
tributed over the cell body. Harwood et a[LG) reported Ibidi, Martinsried, Germany). The microchannel thus provides a hydro-

. . dynamically stable platform to monitor bacterial swimming motility free
that P. pu“dacames a tuft of up to seven Bagella polarly of the inBuence of convection and evaporation. During the next 6 h, the cells

arranged at one end of the cell body. They furthermore,, the surface formed the cores of growing colonies. Cells were dividing
reported that the swimming pattern does not show thewith an approximate doubling time of 1 h. At the same time, the number
characteristic tumbling events known froB coli, but is of cells coexisting in the swimming phase also increased continuously.
rather dominated by abrupt directional changes, inchingApproximately 7 h after plling, the swimming cells were populating the

| f th . . di . h . __“entire volume of the channel.
reversals of the swimming direction. Later, the turning The cells had an average size of 4650.23um# 1.93 + 0.04um. We

angle and run-time distributions were also measureietermined the cell size based on 500 segmented images of a typical
(17,18. recording, each image showing an average number of ~60 cells. From the

In this article, we conbrm the bimodal turning angle contour of each cell in every image, we determined the length of the major
distribution that has been reported by others, though Witf?”d minor axes of an ellipse having the same moments of inertia as the

different weighting of the two preferred anales. Further- cell with a built-in MATLAB program function (The MathWorks, Natick,
g g p gles. MA). Averaging over all cells in allimages, we found the values given above

more, we Opserye, to our knqwlgd_ge for th_e Prst time for the major and minor axes, respectively. We worked with cell densities of
that the swimming speed of individud. putida cells  ~100cells per mifin the Peld of view far away from the surface. On average,

changes, on average, by a factor of two upon a reversdhe distance between neighboring cells is thus ~1@01i.e., two orders of
in their swimming direction. We present a simple theoret_magnitude larger than the cell size. In addition, we manually excluded

ical model that incorporates the two distinct swimmin from our analysis the rare cases, where cells seemed to interact with
P 9 neighboring cells. Therefore, we can assume that hydrodynamic interactions

speeds and correctly captures the mean-square displacgsween the cells do not play any role in our data and, consequently, no
ment (MSD) of a population oP. putidacells. The model collective patterns of any kind emerge. The channel was mounted on the
furthermore highlights that the two swimming speeds resulistage of an inverted IX-71 microscope (Olympus, Hamburg, Germany),
in an increased MSD as compared to a population of cel|€auipped with an EoSens MC 1362/63 high-speed B/W camera (Mikrotron,
hat move with a constant intermediate speed. Finally™®chem Germany). . .

t . . . p ’ y: We recorded a sequence of phase-contrast images with aJFQ FLN-

an analysis of the directional autocorrelation reveals &y objective (Olympus, Hamburg, Germany) for 1 min at a rate of
pronounced negative dip at times at ~2 s. Only with an2s frames/s in the center of the microchannel50 um away from both
extended theoretical model that incorporates the nonexpghe top and bottom interfaces. Eight-bit images with a resolution of
nential character of the run-time distribution can we 1280# 1024 pixels were stored for further processing.

explain this prominent feature in the directional autocorre-

lation function. Segmentation and cell tracking

We used a custom-made MATLAB program (Ver. 8.0.0.783, R2012b;

MATERIALS AND METHODS The Mat_hWorks, Ismaning, G_e.rman_y) to blr)arlze the images and extract
information about the cell positions in the microchannel.
Bacterial cell culture First, a bandpass blter was applied to correct for high-frequency noise

from the CMOS-sensor of the camera and for spatial modulations at

P. putidaKT 2240 cells from DS frozen stock were grown to stationary frequencies lower than the average cell size that may arise due to uneven
density in an overnight shaking culture of Lysogeny broth medium (LB- illumination. The bltered images were then converted into binary images
Medium Lennox, 10 g/L Tryptone, 5 g/L NaCl, Yeast Extract 5 g/L, using isodata thresholdind §). From the binary image sequence, a back-
adjusted to pH 7.0; AppliChem, Darmstadt, Germany). Approximately ground image was constructed by calculating the average intensity over
50 uL of the dense cell suspension were dispersed on a solid agar distime for each image pixel. The resulting background image was subtracted
(LB-Medium, 1.5% Agar-Agar; AppliChem). The dish was incubated for from each image in the sequence to exclude nonmoving cells.
24 h at 30C. With a sterile inoculation loop, a single colony from the  After applying a second isodata thresholding and#a 3 binary median
conBuent cell layer was picked and streaked onto a new LB-dish, whictplter, the binarized images accurately captured the contour of all swimming
was then again incubated for another 24 h. cells in the beld of view. The positions of all cells in each frame were deter-

Before an experiment, a 50-mL Rask with N-Medium (5 g/L Peptone, mined by calculating the centroid (center of mass) of the corresponding
3 g/L meat extract, adjusted to pH 7.0) was inoculated with a single connected region in the binary image. We then used a MATLAB version
loop pick from the stationary LB-dish and the suspension was grown overof the cell-tracking algorithm by Crocker and Gri&j to link the centroid
night on a shaker at 3C rotating with 300 rpm. Cells from the stationary positions to form trajectories in time and space.
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Our imaging method yields a quasi two-dimensional projection of presented below, we manually checked and identibPed the turn events in
the swimming pattern. However, the tracking depth of our setup is onlyeach trajectory.

d! =*=7 um. Furthermore, trajectories slower than gt/s and shorter Given the trajectory of a celk(t) ! [x(t), y(t)], we debned its velocity by
than 2 s were excluded from the analysis. This ensures that we restrict 0 0
our analysis mostly to trajectories that lie in a narrow zone around the focal V&% | r$% &¥ & A%

. )

plane. If a cell swims along a straight trajectory foR s with the mean At
speed of our cell population and at a maximum grazing angle with the focal

lane, th d will be und timated by at t 3%. Note, h , that . ) . " I
plane, the speed witl be underestimated by at most 3%. Note, however, t %vhereAt I 0.04 s is the time resolution. After rewriting the velocity in
the error may become larger in cases where there are additional turnin .

; . e ) golar coordinates as
events in the trajectory. Similarly, the measured values of the turning angle
may also be affected by the Pnite tracking depth of our system. In particular, v&% | v$%’:05q0$%sin (p$%(
turning angles op < 90" will be underestimated whereas anglegaf 90
will be overestimated if the runs before and after the turning event do not lie
in a plane parallel to the focal plane of our imaging system. However, thewith speedv(t) ! j v(t)j, we obtained the angular velocity as
qualitative shape of the turning angle distribution reported below is not 0 0
inBuenced by these effects. o | p$% &o% & At%
w$% ! —

Analysis of the cell trajectories _ _ _ , _
Our algorithm to detect turns is a modibed version of the algorithm

We analyzed a data set of 814 trajectories in total. After visual inspection ofpresented in Masson et aR1.

the entire data set, 269 trajectories were discarded (3oating dead cells, cellsFirst, we tracked the spee#f) of each trajectory and identibed all local
in the course of division, etc.). For further analysis, we smoothed theminima, which were located at time&g;,. The two neighboring speed max-
remaining 545 trajectories by running averages over three points. Turningma aroundimin att; » were used to determine the depth of the minimum
events were identibed by rapid changes in the cells® speed and/or angular

velocity, as presented ifig. 1, A andB. In addition to using the algorithm Av ! maxX v, % & $min%vE: % & $min%(
A B
n
)
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If AV/V(tmin) > 3.5, the cell was said to be in the turning state for those times  jectory with a pausing event can be seen. When
t aroundtmin, Wherev(t) < W(tmin) ) 0.2Av. following the swimming speed and angular velocity

Second, our alternative criterion to identify turns was based on dramatic over time. we notice that the speed remains close to
changes in the absolute value of the angular veldeify)j. We determined ! P

the timestmnax Wherejo(t)j displayed local maxima and denoted the posi- ~ Z€ro during the pausing, whereas the a_ngU|ar velocity
tions of the neighboring minima as » We identiped a turning state if shows a sequence of large repeated spikes that ref3ect

the angular chang@¢j during the time interval;£t; was signipcantly the jiggling motion of the cell body (seeig. 1 D).

larger than expected, according to rotational diffusion of the velocity direc-2 We notice rapid speed changes in some of our trajec—
tion. M isely, if ’ . . "

10n. MIore precisely. | tories. A representative case can be seelriim 1 E.

jApj>y/D, %> & 1,% Here, the angular velocity remains low throughout the
time series, while the swimming speed undergoes a clear

withy! 7.3andD,! 0.1rad s*!, we debned tumbling on the subinterval change (se€ig. 1F).

aroundimay where Movie S1, Movie S2 Movie S3 Movie S4 Movie S5 and
Jj 0Fmax%0j & wH%jK 0.9 Aw Movie S6 showing examples of the different turning
scenarios, among them the three example trajectories dis-
with played inFig. 1 can be found in th&upporting Material
; Ay . Iy ; The turning angle distribution ref3ects the presence of two
Aw ! max % % % %
w j w¥max¥0] & W %0)j wHmax¥o] & w2 %0)( classes of turning events in the swimming trajectories of
P. putida As can be seen ifrig. 2, the distribution has a
bimodal shape with a preferred turning anglepat 180 .
RESULTS A second smaller peak is found @ ! 0. Even though
the peak positions and heights differ, the bimodal turning

In this section, we prst focus on our experimental resultsemg|e distribution is in agreement with earlier resuits,(9.
We present a large data set of experimentally recorded

swimming trajectories that we analyzed with respect to
speed and changes in the direction of propagation of th&pon a reversal of the swimming direction,
bacteria. We then present a theoretical description that cajthe speed changes by a factor of two

tures the main features of the swimming patterPgfutida . . . .
gp o A closer analysis of the trajectories reveals that in many

cases, the swimming speeds before and after a reversal event

P. putida displays two distinct classes of turning are different. In particular, the time series showrrig. 1B
events suggests that upon a reve.rsal, the speed changes by a factor

] . ) ) o of two. We have systematically analyzed all reversal events
P. putidaexhibits a typical bacterial swimming pattern that 5 evaluated the difference between the swimming speed
consists of a sequence of straight runs interrupted by turningefore the reversaly, and after the reversal, 1, normal-
events. A closer look reveals that for most turns, the angle of,¢ by the sum of both speed3! (Viy 1 & Vi)/(Vig 1) V)-
propagation changes byyz! 180, i.e., the cellreversesits Viy 1 andy differ by a factor of two,Q takes the value
direction of motion. The reversals are rapid events that takeys +1/3 In Fig. 3, we show distributions of) for reversals
0:13 + 0.004 s on average. An examp_l.e of a trajgctory that(A) and ¢.-events B) separately. IrFig. 3A, the two max-
displays several reversals can be seefign 1A. InFig. 1B, jma atQ | +1/3 clearly indicate that in the case of a
the corresponding swimming speed and absolute value ggyersal eventd; ! 180), the swimming speed indeed

the angular velocity are shown as a function of time. Thechanges by a factor of two. The speed distribution of
sharp localized peaks in the angular velocity together with

the rapid jumps in the swimming speed conbrm that rever-
sals are short and sudden events that interrupt the constant
swimming motion of the persistent runs. 0.04}
To a lesser extent, a second class of turning events can
also be observed. In those cases, the direction of propaga-

tion before and after the event remains similar, resulting D 0.02¢

in a turning angle of ¢, ! 0. In contrast to the reversals,

the phenomenology of the,-events is more diverse. In 0

particular, two types of,-events can be distinguished. 0 50 100 150
1. We observe pausing events that interrupt the persistent |¢‘ [deg]

swimming for a gertam time. D_L,‘“”_g this Flme' the FIGURE 2 Turning angle distribution of a population of swimming
body of the bacterium performs a jiggling motion before p. putidacells. Maxima aig; ! 180 and¢,! 0" indicate the two classes
resuming the next run. IRig. 1 C, an example of a tra- of turning events. To see this bgure in color, go online.
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A B Run times and swimming speeds are not
' i ' correlated

Are the two alternating swimming speeds related to distinct
run times?
In Fig. 4 B, the run-time distribution for trajectories
%% -05 00 05 1o %0 -05 00 o0s To withreversal events is shown (note that this is the majority
(Vk41 — vk)/ (Vg1 + Ok) (Vk41 — vk)/ (Vg1 + k) of trajectories, ~66%). The run-time distribution shows

FIGURE 3 Difference between the swimming speeds before and afterél’jl maximum at ~1 s and erIdS an average run time of

turning event, normalized by the sum of the two swimming speeds (denotec:J--SO + 0.07 s. The reversal events, for comparison, are
by Q in the main text). &) Distribution of this quantity for reversal events Mmuch faster than the runs and take only 0.2£30.004 s
(¢! 180). (Dashed vertical lingsPositions ofQ ! +1/3. The maxima  on average.
Et tlf/3indic:;1te thatthg.sw'i?mingfspeeds' before and aﬁer?r%\{er(s)al differ | et us now consider correlations between the swimming
y a factor of two. ) Distribution for turning events witig, ! 0. On speeds and run times. fig. 5A, a scatter plot is shown,
average, no systematic difference between the swimming speeds befor . )
and after the turning event can be observed. To see this bgure in coIoWhere e_aCh pplnt marks the run time that cor.responds to
go online. a run with a given average speed. No correlation between
the speed and the run time is observed, i.e., for each value
trajectories with reversal events is showrfity. 4 A. Here,  ©f the swimming speed, we bnd the same distribution of
the presence of two distinct swimming speeds is les§Un times. We have furthermore determined the run-time
obvious, indicating that the speed values are differengdistributions separately for slow and fast runs. In both
from one cell to another. Nevertheless, a close match of@ses, similar distributions are found (data shown in the
the speed distribution can be obtained by the btted sum gPUPPOrting Materigl We have also considered correlations
two Gaussians. The center values and widths of the twd€tween the durations of successive runs that are interrup-
Gaussians yield estimates of the two swimming speedi€d by a reversal event. The corresponding scatter plot is
() and their standard deviations) averaged over all displayed inFig. 5 B. lIts shape can be explained by an

reversal events overlay of two independent distributions of the type shown
in Fig. 4 B. Thus, also in this case, no correlations are
w ! 194ums! o1 87 ums! and found.
M .
uy ! 383umst o, ! 9.5 ums! ('uz ! 1-97) A simple random-walk model captures the
1

mean-square displacement of P. putida

For theg,-events, on the other hand, a different behavior isBased on the analysis of the swimming trajectories pre-
observed (se€ig. 3 B). Even though th& values show a sented above, we brst propose a simple random-walk
broad distribution also in this case, the maximal probabilitymodel to capture the macroscopic spreading of a population
is centered at®! 0, i.e., there is no systematic difference of swimming P. putida cells. Here, it was our goal to

in the swimming speeds before and after #ieevents. obtain as much analytical insight as possible by including
A A B s
4 o 4
o,
= 3 5
=
Z <
52 5
10 20 30 40 50 60 ! = Do
<U>run [,um/s] trun [S] P ’
FIGURE 4 Analysis of trajectories with reversal events owgly!( 180 ). Go 10 20 30 40 50 60 4 5
(A) Distribution of swimming speeds (average value for eachmeohbarg (V) run [pm/s]
btted by a sum of two Gaussian distributiossl{d line). The mean run
speeds ;) and standard deviations;} of the two bts arg,; ! 19.4um FIGURE 5 Runtime and speed correlations for trajectories with reversal
1ol 87um £ anduy ! 38.3um £ oo 1 9.5 um S (upfuy ! events only ¢, ! 180). (A) Scatter plot of the run time as a function of

1.97), respectively. B) Distribution of run times green bar} with a average swimming speedDdts) Runs between two reversal events. No
mean runtime of ! 1.50 + 0.07 s. Only runs between two reversal events correlation between the duration of a run and its average speed is observed.
are included. The exponential Rigshed lingand the bt of g-distribution (B) Scatter plot of the run time as a function of the duration of the previous
(solid line) are uniquely debPned by the mean run timand contain no  run. No correlations between the run times of successive runs are found. To
further bt parameter. To see this bPgure in color, go online. see this bgure in color, go online.
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only the most prominent characteristics of the swimming|n particular, fora! 1 andD, ! 0, Eq. 1 yields the speed

pattern into the model. Because the swimming pattern isiutocorrelation functiomv(t)v(0)i, which decreases mono-
dominated by the reversal events, we concentrate our theqonically from

retical description on the subset of trajectories that contain

reversal events onlygq ! 180, 66% of the total number ) v fort! Oto $1) n%’
of trajectories). The following features are included in our 2 ' 2
model:

for large times. Setting the speeds to unity, Eq. 1 corre-
1. We approximate the run times as exponentially diStrib-sponds to the directional autocorrelation function
uted with a mean run time, implying that runs are inter- ) ,
rupted at a turning ratet | %% According to the he$% e$0%i ! exph & 'A$1 & a% ) 2D, (1%
distribution of run times ir~ig. 4B, we setr ! 1.50 s.
Becauser exceeds the duration of reversal events byin agreement with Lovely and DahlquistZ). In the Sup-
one order of magnitude, our model neglects the duratiorporting MateriaJ we present the derivation of Eqg. 1 and
of the reversals. demonstrate how it is related to the M3fx(t) B r(0)]i
2. Similar to earlier work on the run-and-tumble motion of of the random walker. IrFig. 6, the experimental result
E. coli (22), we express the directional persistenceforthe MSD is shownréd dotg together with the analytical
between successive runs by the persistence parametegsult dashed blue ling At short times, the MSD displays a
a ! h cos¢i, debPned as the mean cosine of the turningballistic regime, whereas for larger times we approach
angle ¢. An ideal reversal would correspond to ! the diffusive limit. Our simple model thus captures the
&1; for our data set, we obtain! & 0.95, which reRects MSD reasonably well, also with very good agreement at
the width of the peak ap, ! 180 in the turning angle short times.
distribution ofFig. 2 The diffusive regime of the random walk is characterized
3. Each turning event comes along with a change in the badsy the diffusion coefpcient
teriumOs speedt). We assume that the speed alternates <|r$% &rS}D%?O

between two constant valuesandv, (recallFig. 1B for D! lim,_.
illustration). The values of; andv, are estimated by the 61
mean value [ in . . . :
me 4;{ uesu; » from the Gaussian bts presented in (in three dimensions). Fdb, we obtain
4. We include Ructuations in our model such that the persis- | 2D, (V1) v3)) A(v}) v3) 2aviv)
tent runs are not perfectly straight, due to rotational 62D, %l & a%D, ) A1) a%l( @)

diffusion of the velocity direction. The origin of rota-
ti(_)ngl diffus_ion is_ a combination of intrinsic B_uctuatior_ls For equal swimming speeds Eq. 2 reduces to the well-
within the signaling network and the propulsion machin- known result 22)

ery of the cells on the one hand, and thermal noise in

the Ruid on the other hand. We denote the cellOs velocity DI v _
direction by the unit vectore(t). During a run, its 3'2D,) A%l & a%(

dynamics is governed bye(t)-e(0)i ! exp&2D,t),

where D, is the rotational diffusion constan©§,24). To illustrate the signibcance of the two alternating speeds
Using the directional autocorrelation function of the Vi, V2, we compare the diffusion coefpcient from Eq. 2 to
runs (see theSupporting Materig}, we obtain D, ! a random walker moving constantly at the mean speed
0.023 rad $*'. This value is consistent witlD, !
0.062 rad s** for E. coli (25). The corresponding time-

2

scale, 1/(®,)! 21.7 s, during which directional correla- &, 6000
tions decay, clearly exceeds the duration of the runs. g 4000
Based on the properties described above, we can phrase a &
model that can be solved analytically (see thepporting é] 2000
Material for details of the derivation). ~ 0
We brst determine the velocity autocorrelation function, 0 1 2 3 4 5

2 2

% vi%i | &%) 2D"%<u costar%

2 ) FIGURE 6 Mean-square displacement. The experimental datd is

shown together with the results of a simple analytical modzshed

) vlvzsinfﬁﬂato/) . blue ling), an improved modek(ack), and a full numerical simulatioryél-
low). To see this bgure in color, go online.
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v! (vi) wvo)/2 with diffusion constanD;. Using Eq. 2, we  the exponential tail for large times. In our more detailed
can demonstrate thdd > Dy. This shows that the alter- model, the distribution of the mean run speeds of cells is
nating speeds enhance the diffusion coefpcient. Thus, bactaiso taken into account. Based on the result of our btting
ria undergoing run-and-reverse motion, with alternatingin Fig. 4 A, we now treat the speeds , as Gaussian vari-
velocities, spread faster then bacteria showing run-andables with meang:; , and variancesr; ,. For each new
reverse behavior with a constant intermediate velocity. Forun event, the speed is drawn according to the corresponding
the presented parameters fputidg we obtainD ! 580  Gaussian.
um?s%t = 2.8# D;. Note that the experimental trajectories  In this more realistic model, taking into account the
are too short in time to reliably estimate the diffusion coef- peaked run-time distribution, we recover negative direc-
pcientD from the data. Instead, we can compare the predictional autocorrelations. However, they are not as pro-
tion of the analytical model to an estimate®@based on the nounced as in the experimental data. Several additional
rePned model presented below. aspects need to be taken into account to reduce this discrep-
ancy (see th&upporting Materiafor a further discussion of
these points).
A nonexponential run-time distribution leads to The tracked trajectories usually start with a run, which in
negative values in the directional autocorrelation general began before the recording. In contrast to exponen-

To test the model description proposed above, we havéially distributed run times, where the probability to tumble
analyzed directional autocorrelations in our data andwithin a small time interval is time-independent, we now
compared the experimental results to the modeling predichaVe to consider that the distribution of the Prst run times
tion (see theSupporting Materiaffor details). InFig. 7, IS different. IntheSupporting Materigiwe calculate the cor-
the autocorrelation functions of the directioh)( the speed ~responding renewal distribution of the Prst run time for the
(B), and the velocity of propagatiorCf are shown. When y-distribution (Eq. 3) and show that the mean is given by
comparing the experimental resulteed data pointy to  0-75r. This result is consistent with the experimental data
the prediction of our simple random-walk modeilye  for which the average Prst run time is 1.28=s 0.85r.
dashed ling it becomes clear that the model does notFurther inspection of the mean run speeds shows that for
recover one of the most prominent features of the experi62% of our trajectories, a cell starts with the larger speed
mental curves. The directional autocorrelation of the exper¥2: it turns out that this fact needs to be implemented to
imental trajectories becomes negative for intermediate time§atisfactorily explain the speed autocorrelation function.
at ~2 s. This observation cannot be explained based on olinally, it is important to realize that our trajectories are
simple random-walk model. relatively short in time with an average duration of 3.4 s.

We therefore propose an extended version of our moddrence, the majorit_y of trajectories contains only a single
that takes into account the nonexponential shape of theeversal evgnt. Thls'also has an effect on the directional
run-time distribution displayed irFig. 4 B. We observe autocorrelation function.

that the distributiorp of run timest can be well described ~ We performed numerical simulations of our extended
by ay-distribution with a shape parameter of 2, model, taking the above aspects into account. The results

of these simulations show a remarkably better agreement
PS% | ! exp<&t>, 3y with the experimental data than the simple que!. For the
$r/2% 7/2 MSD in Fig. 6the result of the extended model is displayed
in black and gives a clear improvement with respect to the
wherer denotes the mean run time. It increases linearly forsimple model dashed blue ling Long-time simulations
small times and features both the pronounced maximum andp to 10 s yield a diffusion coefpcient of B! 470 um?

FIGURE 7 Autocorrelation functions of directiod\), speed B), and velocity of propagationQ). In each panel, the experimental datadj is shown
together with the results of a simple analytical mod#dghed blue ling an improved modelklack), and a full numerical simulationygllow). To see
this bgure in color, go online.
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s*! (compared to the value @ ! 580um? s** for the sim- For lophotrichously Ragellated bacteria liReputida the
ple model). In addition, the autocorrelation functions in Ragellar dynamics during a reversal event have never been
Fig. 7 are captured much closer by the extended model. Inmaged directly. It has been conjectured that reversals in
particular, it reproduces the negative dip of the directionalthe swimming trajectories dP. putidamay be caused by
autocorrelations, as well as the steep decrease in the spesgnchronous reversals of the Ragellar motdr8).(In this
autocorrelations after ~1 s. case, the entire Ragellar bundle would switch from a push-
We also present numerical simulationskigs. 6and7  ing to a pulling mode, analogous to the single Ragellum of
(yellow curve} which are obtained by taking the exact monotrichously Ragellated species. On the one hand, there
sequences of run times and mean run speeds of each expare strong indications that a pulling Ragellar bundle may
imental trajectory. Note that details of speed RBuctuations arbe unstable and will experience jamming,6); on the
not required; turning angles and the inBuence of rotationabther hand, to continuously remain in the pushing mode,
diffusion are only modeled according to our approachthe cell body would have to turn by 18@uring a reversal.
described above. We bnd that the MSD and all correlatiorBut even when imaging with a twofold increased frame rate
functions are very well reproduced. This is a further justib-(50 frames/s), we never observed the turning of a cell body
cation that the random-walk approach is appropriate taupon a reversal. Moreover, a simple estimate shows that
describe the motility pattern d®. putida In particular, the the force required to turn the cell body in a time below
shape of the directional autocorrelation function includingthe resolution of our 50-Hz imaging exceeds the normal
the negative dip is also very well reproduced. As thepropulsive force of a bacterium by a factor of eight.
simulation neglects speed Ructuations during the runs, we We performed additional recordings of cells swimming
observe that the initial value of the speed correlation funcclose to a solid/liquid interface to get further insight into
tion is slightly below the experimental value. the swimming mechanism (data shown in tBepporting
Material). We observed that the cell density increased
DISCUSSION in _the vicinity of th_e interface as qompar_ed to the bulk
Ruid. Furthermore, in agreement with earlier results from
We have investigated the swimming behavior of the soilE. coli, the curvature of cell trajectories was increased at
bacteriumP. putida We observed a typical bacterial swim- the solid/liquid interface 7). Cells preferentially turned
ming pattern consisting of a sequence of straight runs thato the right (negative angular velocity).
are interrupted by turning events. A closer analysis of the How can we reconcile these observations?
turning angles revealed a bimodal distribution with a A possible scenario to stay in the pushing mode upon a
preferred turning angle at; ! 180 and a second smaller reversal without turning the cell body would be that
maximum atg, ! 0. Thus, after having completed a run, P. putida Rips the direction of the Ragellar bPlaments, so
a swimmingP. putidacell will either reverse its direction that they point backward even though the side of the
or, less likely, continue to swim in the same direction. Thecell where the motors are located is pointing to the front.
bimodal character of the turning angle distribution of Note that a similar Ragellar mechanism has been proposed
P. putidahas already been reported earliev (1§. Contrary  earlier for the reversal of bacterial locomotion at an
to their result, we bnd the large angle to be the more likelyobstacle 28).
one. In addition, the positions of the two peaks in the histo- This scenario is in agreement with the negative angular
gram differ. Note, however, that Davis et all8] have velocity observed for near-boundary swimming because a
already shown that the peak positions and heights maywist to the right would be expected both before and after
vary between different populations and sensitively dependthe reversal. From the increased cell density near a bound-
for example, on the cell density of the culture. Given the dif-ary, on the other hand, no conclusions on the Ragellar
ferences in experimental conditions, we may thus concludarrangement can be drawn. Although hydrodynamic interac-
that our results are in qualitative agreement with earlier retions predict an increased near-wall density for cells moving
ports in the sense th& putidadisplays a bimodal turning in a pushing modeX9,30, the inBuence of such interactions
angle distribution with a peak at low and one at high valueson cell-surface scattering was shown to be negligiBi8.(
of the turning angle. The accumulation of cells near the interface could be
Run-and-reverse patterns have been reported for numeinstead attributed to collision effects, independent of the
ous monotrichously Ragellated species sucRsmudoalter-  propulsion mode 32,33. To unambiguously clarify the
omonas haloplanktior Shewanella putrefaciengl2,13. Ragellar dynamics during a reversal event, direct imaging
It is considered the typical swimming behavior of marine of the Ragella is required. Unfortunately, so far our Buores-
bacteria (1). In the case of monotrichously RBagellated cence staining experiments have not been successful
swimmers, the reversal is induced by a change in the rotabecause the bacteria were rapidly damaged by the high
tional direction of the motor that propels the Ragellum. phototoxicity of the Ruorescence excitation light. The
Upon such a reversal, the mode of propagation of the bacte3agellar dynamics ofP. putida during a reversal event
rium changes from pushing to pulling. thus remains an open question.
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In addition to reversals with an anglef! 180, asec- correlations between the run time and the mean run speed.
ond type of turning event was observed with an angulaiThis is consistent with recent results by others showing
change ofp, ! 0" between the successive runs. that the rotary motor oP. putidacells spends similar frac-

What is the purpose of this swimming pattern? tions of time in the modes of clockwise and counterclock-

The photosynthetic bacteriufRhodobacter sphaeroides wise rotation 86).
is equipped with a single Ragellum that can only rotate in We have proposed a theoretical description that includes
one direction. Its trajectories consist of straight runs thatthe alternating swimming speeds. To our knowledge, itis the
are interrupted by pausing events with a duration of up tobrst time that alternating speeds are incorporated into a
several seconds. In this case, apart from rotational diffusiomodel of this kind. Our approach clearly shows the minimal
during the runs, the cells have only limited possibilities torequirements to account for the different features observed
reorient and randomize their direction of movement. Onin our data. In its simplest, analytically accessible version,
the one hand, Brownian motion acting on the cell bodyincluding exponentially distributed run times, the persis-
during the intermittent pausings induces changes in theéence parametes, rotational diffusion, and the two alter-
direction of motion 84); on the other hand, polymorphic nating swimming speeds, our model yields an accurate
transitions that are initiated when the motor resumes rotaapproximation of the MSD, i.e., the macroscopic spreading
tion may reorient the cell body3f). Here, we conjecture of a population oP. putidacells. The directional autocorre-
that theg, events may serve a similar purpose. They providdation function, however, can be only recovered in an
an additional degree of freedom tHatputidamay utilize to  extended version of the model. In particular, the nonexpo-
modulate its swimming behavior to affect, for example, thenential shape of the run-time distribution has to be included
overall diffusion coefbcient of its motion. In a recent anal- into the model to capture the experimentally observed nega-
ysis based on a tethering assay, the existence of pausingigse minimum in the directional autocorrelation. Moreover,
in the rotation of the Ragellar motor & putidahas been our model highlights that the two alternating speeds result in
clearly conbrmedd6). an increased diffusion constant as compared to a bacterium

Note also that additional turning strategies have beerthat swims with a constant intermediate speed. Thus, this
developed to enhance the efbciency of reorientation. Fofeature allows the bacterium to explore its environment
monotrichously Ragellated species that can reverse the rotanore efpciently, without an increased energetic cost.
tion of their Bagellar motor, the spread in the angle of the
reversal events is, in addition to a small degree of directional
diffusion during the runs, the only feature by which many SUPPORTING MATERIAL
of them can enhance changes in their orientation thasix bgures, six movies and other supplemental information are available at
are required, e.g., for chemotactic responses. Recently, drtp://www.biophysj.org/biophysj/supplemental/S0006-3495(13)01021-7
additional type of turning event has been identibed in the

. : . : . . The authors are grateful for Pnancial support under the framework of the
swimming pattern oMbrio alginolyticus a bacterium that Deutsche Forschungsgemeinschaft Research Training GYoupquilib-

also uses a single polar 3agellum tO_ drive_ its motid®)(  yium collective Dynamics in Condensed Matter and Biological Systems
After a reversal, the Ragellum &f alginolyticusperforms  (grant No. GRK 1558).

a Rick that randomly reorients its swimming direction.
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