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ABSTRACT We recorded large data sets of swimming trajectories of the soil bacterium Pseudomonas putida. Like other
prokaryotic swimmers, P. putida exhibits a motion pattern dominated by persistent runs that are interrupted by turning events.
An in-depth analysis of their swimming trajectories revealed that the majority of the turning events is characterized by an angle of
f1 ! 180" (reversals). To a lesser extent, turning angles of f2 ! 0" are also found. Remarkably, we observed that, upon a
reversal, the swimming speed changes by a factor of two on averageÑa prominent feature of the motion pattern that, to our
knowledge, has not been reported before. A theoretical model, based on the experimental values for the average run time
and the rotational diffusion, recovers the mean-square displacement ofP. putida if the two distinct swimming speeds are taken
into account. Compared to a swimmer that moves with a constant intermediate speed, the mean-square displacement is strongly
enhanced. We furthermore observed a negative dip in the directional autocorrelation at intermediate times, a feature that is only
recovered in an extended model, where the nonexponential shape of the run-time distribution is taken into account.

INTRODUCTION

Among the fundamental modes of motility in biological
systems, bacterial swimming is one of the most prominent
examples (1). It is central to a wide range of biological func-
tions, including processes as diverse as intestinal functions,
the spreading of infections, or the early stages of bioÞlm
formation (2). Swimming bacteria propel themselves with
the help of ßagella. A ßagellum is composed of a helical
Þlament that is connected via a hook to a rotary motor.
The motor is embedded in the cell wall and drives the rota-
tion of the Þlament (3). The swimming pattern and motion
parameters depend on the number and distribution of the
ßagella across the cell body. In particular, we distinguish
the polar arrangement of a single ßagellum at one end of
the cell (monotrichously ßagellated) from a tuft of several
ßagella at one end of the cell (lophotrichous arrangement),
and a uniform distribution of several ßagella across the
cell body (peritrichous arrangement) (4).

The most thoroughly studied prototypical example of a
bacterial swimmer is the enteric bacteriumEscherichia
coli (5). The rod-shaped cells of ~2mm in length are uni-
formly covered with ßagella that may extend several body
lengths out into the surrounding. Rotation of the helical
Þlaments drives the swimming motility of these cells
(6,7). During counterclockwise rotation of the ßagellar
motors, the helical Þlaments form a coherent bundle that
pushes the cell forward (8). If one or more motors change
to clockwise rotation, the bundle ßies apart and the persis-
tent mode of swimming ends in a tumbling event (9). During
tumbling, the cell body rapidly reorients. Once the motors
resume counterclockwise rotation, the bundle is reas-

sembled and a new swimming direction is randomly
selected from the tumbling process with a preferred turning
angle of ~70" . This results in the typical run-and-tumble
swimming pattern, where periods of persistent displacement
and reorientation events alternate. In response to external
chemical cues,E. coli cells are able to adapt their tumbling
frequency to bias their direction of motion toward or away
from a chemical source, a phenomenon known as chemo-
taxis (10).

In contrast, species that are decorated with a single polar
ßagellum are, in many cases, restricted to a much simpler
run-and-reverse pattern of motion. Depending on the helic-
ity of the Þlament and the sense of rotation of their ßagellar
motor, they either move in a pushing mode, where the ßagel-
lum is oriented backward and drives the cell body from
behind, or in a pulling mode, where the ßagellum is oriented
in the swimming direction and pulls the cell body forward.
By changing the rotary direction of their motor, monotri-
chously ßagellated bacteria can switch from pushing to
pulling mode and vice versa, thereby reversing their swim-
ming direction by 180" . In this case, a reorientation to other
swimming directions can be achieved only by deviations
from the turning angle of a perfect reversal (180" ) and by
rotational diffusion during the straight runs. Numerous ex-
amples of run-and-reverse swimming can be found among
the marine bacteria (11). For example,Pseudoalteromonas
haloplanktisandShewanella putrefaciensrely on this swim-
ming pattern to achieve chemotactic tracking of individual
moving algae (12,13).

Recent work has demonstrated that bacteria with a
single polar ßagellum can also exhibit more-complex swim-
ming patterns. For example, the marine bacteriumVibrio
alginolyticus may execute an additional ßicking motion
with its ßagellum that results in a reorientation of its
swimming direction by ~90" (14). Instead of a simple
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run-and-reverse pattern,V. alginolyticus follows a cyclic
three-step swimming protocol (run-reverse-ßick): a forward
run is followed by a reversal of the swimming direction.
When switching back to forward motion, the ßagellum
ßicks to select a new swimming direction. In the presence
of chemoattractants, the run times of the swimming pattern
are adapted so thatV. alginolyticuscan rapidly respond and
localize chemoattractant sources in its vicinity (14,15).

In this work, we investigate the swimming pattern of the
soil bacteriumPseudomonas putida. Like E. coli, P. putida
carries several ßagella. However, they are not evenly dis-
tributed over the cell body. Harwood et al. (16) reported
that P. putidacarries a tuft of up to seven ßagella polarly
arranged at one end of the cell body. They furthermore
reported that the swimming pattern does not show the
characteristic tumbling events known fromE. coli, but is
rather dominated by abrupt directional changes, including
reversals of the swimming direction. Later, the turning
angle and run-time distributions were also measured
(17,18).

In this article, we conÞrm the bimodal turning angle
distribution that has been reported by others, though with
different weighting of the two preferred angles. Further-
more, we observe, to our knowledge for the Þrst time,
that the swimming speed of individualP. putida cells
changes, on average, by a factor of two upon a reversal
in their swimming direction. We present a simple theoret-
ical model that incorporates the two distinct swimming
speeds and correctly captures the mean-square displace-
ment (MSD) of a population ofP. putidacells. The model
furthermore highlights that the two swimming speeds result
in an increased MSD as compared to a population of cells
that move with a constant intermediate speed. Finally,
an analysis of the directional autocorrelation reveals a
pronounced negative dip at times at ~2 s. Only with an
extended theoretical model that incorporates the nonexpo-
nential character of the run-time distribution can we
explain this prominent feature in the directional autocorre-
lation function.

MATERIALS AND METHODS

Bacterial cell culture

P. putidaKT 2240 cells from Ð80" C frozen stock were grown to stationary
density in an overnight shaking culture of Lysogeny broth medium (LB-
Medium Lennox, 10 g/L Tryptone, 5 g/L NaCl, Yeast Extract 5 g/L,
adjusted to pH! 7.0; AppliChem, Darmstadt, Germany). Approximately
50 mL of the dense cell suspension were dispersed on a solid agar dish
(LB-Medium, 1.5% Agar-Agar; AppliChem). The dish was incubated for
24 h at 30" C. With a sterile inoculation loop, a single colony from the
conßuent cell layer was picked and streaked onto a new LB-dish, which
was then again incubated for another 24 h.

Before an experiment, a 50-mL ßask with N-Medium (5 g/L Peptone,
3 g/L meat extract, adjusted to pH! 7.0) was inoculated with a single
loop pick from the stationary LB-dish and the suspension was grown over-
night on a shaker at 30" C rotating with 300 rpm. Cells from the stationary

shaking culture were diluted with N-Medium to an optical density of 0.01
(OD600 BioPhotometer; Eppendorf, Hamburg, Germany), corresponding
to a number density of 107 cells per mL.

Setup and imaging

To perform time-lapse recordings of swimming bacteria, the diluted cell
suspension was Þlled into a transparent microchannel, measuring 1 mm
in width, 17 mm in length, and 400mm in height (m-Slide VI 0.4; Ibidi,
Martinsried, Germany). After 5 min, an initial population of isolated cells
had attached to the glass bottom of the channel, and the channel was sealed
at the sides with a Male Luer Lock Connector (natural polypropylene;
Ibidi, Martinsried, Germany). The microchannel thus provides a hydro-
dynamically stable platform to monitor bacterial swimming motility free
of the inßuence of convection and evaporation. During the next 6 h, the cells
on the surface formed the cores of growing colonies. Cells were dividing
with an approximate doubling time of 1 h. At the same time, the number
of cells coexisting in the swimming phase also increased continuously.
Approximately 7 h after Þlling, the swimming cells were populating the
entire volume of the channel.

The cells had an average size of 4.655 0.23mm # 1.935 0.04mm. We
determined the cell size based on 500 segmented images of a typical
recording, each image showing an average number of ~60 cells. From the
contour of each cell in every image, we determined the length of the major
and minor axes of an ellipse having the same moments of inertia as the
cell with a built-in MATLAB program function (The MathWorks, Natick,
MA). Averaging over all cells in all images, we found the values given above
for the major and minor axes, respectively. We worked with cell densities of
~100 cells per mm2in the Þeld of view far away from the surface. On average,
the distance between neighboring cells is thus ~100mm, i.e., two orders of
magnitude larger than the cell size. In addition, we manually excluded
from our analysis the rare cases, where cells seemed to interact with
neighboring cells. Therefore, we can assume that hydrodynamic interactions
between the cells do not play any role in our data and, consequently, no
collective patterns of any kind emerge. The channel was mounted on the
stage of an inverted IX-71 microscope (Olympus, Hamburg, Germany),
equipped with an EoSens MC 1362/63 high-speed B/W camera (Mikrotron,
Mu¬nchen, Germany).

We recorded a sequence of phase-contrast images with a 20# UPLFLN-
PH objective (Olympus, Hamburg, Germany) for 1 min at a rate of
25 frames/s in the center of the microchannel,>150mm away from both
the top and bottom interfaces. Eight-bit images with a resolution of
1280# 1024 pixels were stored for further processing.

Segmentation and cell tracking

We used a custom-made MATLAB program (Ver. 8.0.0.783, R2012b;
The MathWorks, Ismaning, Germany) to binarize the images and extract
information about the cell positions in the microchannel.

First, a bandpass Þlter was applied to correct for high-frequency noise
from the CMOS-sensor of the camera and for spatial modulations at
frequencies lower than the average cell size that may arise due to uneven
illumination. The Þltered images were then converted into binary images
using isodata thresholding (19). From the binary image sequence, a back-
ground image was constructed by calculating the average intensity over
time for each image pixel. The resulting background image was subtracted
from each image in the sequence to exclude nonmoving cells.

After applying a second isodata thresholding and a 3# 3 binary median
Þlter, the binarized images accurately captured the contour of all swimming
cells in the Þeld of view. The positions of all cells in each frame were deter-
mined by calculating the centroid (center of mass) of the corresponding
connected region in the binary image. We then used a MATLAB version
of the cell-tracking algorithm by Crocker and Grier (20) to link the centroid
positions to form trajectories in time and space.
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Our imaging method yields a quasi two-dimensional projection of
the swimming pattern. However, the tracking depth of our setup is only
d ! 57 mm. Furthermore, trajectories slower than 10mm/s and shorter
than 2 s were excluded from the analysis. This ensures that we restrict
our analysis mostly to trajectories that lie in a narrow zone around the focal
plane. If a cell swims along a straight trajectory for>2 s with the mean
speed of our cell population and at a maximum grazing angle with the focal
plane, the speed will be underestimated by at most 3%. Note, however, that
the error may become larger in cases where there are additional turning
events in the trajectory. Similarly, the measured values of the turning angles
may also be affected by the Þnite tracking depth of our system. In particular,
turning angles off< 90" will be underestimated whereas angles off> 90"

will be overestimated if the runs before and after the turning event do not lie
in a plane parallel to the focal plane of our imaging system. However, the
qualitative shape of the turning angle distribution reported below is not
inßuenced by these effects.

Analysis of the cell trajectories

We analyzed a data set of 814 trajectories in total. After visual inspection of
the entire data set, 269 trajectories were discarded (ßoating dead cells, cells
in the course of division, etc.). For further analysis, we smoothed the
remaining 545 trajectories by running averages over three points. Turning
events were identiÞed by rapid changes in the cellsÕ speed and/or angular
velocity, as presented inFig. 1, A andB. In addition to using the algorithm

presented below, we manually checked and identiÞed the turn events in
each trajectory.

Given the trajectory of a cell,r(t) ! [x(t), y(t)], we deÞned its velocity by

v$t% !
r$t% &r$t & Dt%

Dt
;

whereDt ! 0.04 s is the time resolution. After rewriting the velocity in
polar coordinates as

v$t% ! v$t%'cos4$t%; sin4$t%(

with speedv(t) ! j v(t)j, we obtained the angular velocity as

u$t% !
4$t% &4$t & Dt%

Dt
:

Our algorithm to detect turns is a modiÞed version of the algorithm
presented in Masson et al. (21).

First, we tracked the speedv(t) of each trajectory and identiÞed all local
minima, which were located at timestmin. The two neighboring speed max-
ima aroundtmin at t1,2 were used to determine the depth of the minimum

Dv ! max'v$t1% &v$tmin%; v$t2% &v$tmin%(:

A B

C D

E F

FIGURE 1 Swimming trajectories ofP. putida
with typical turning events. (A) Trajectory with
several successive reversals (f1 ! 180" , positions
of the reversals marked inred). (C) Trajectory
with a typical pausing event (f2 ! 0" , position
marked inred). (E) Trajectory with a typical speed
change event (f2 ! 0" , position marked inred).
(B, D, andF) Speed (v, black) and absolute value
of the angular velocity (juj, blue) over time for
the trajectories (A, C, and E), respectively. (Red
triangles) Time points of the corresponding events.
To see this Þgure in color, go online.
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If Dv/v(tmin) > 3.5, the cell was said to be in the turning state for those times
t aroundtmin, wherev(t) % v(tmin) ) 0.2Dv.

Second, our alternative criterion to identify turns was based on dramatic
changes in the absolute value of the angular velocityju(t)j. We determined
the timestmax, whereju(t)j displayed local maxima and denoted the posi-
tions of the neighboring minima ast1,2. We identiÞed a turning state if
the angular changejD4j during the time intervalt2Ðt1 was signiÞcantly
larger than expected, according to rotational diffusion of the velocity direc-
tion. More precisely, if

jD4j>g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr$t2 & t1%

p

with g ! 7.3 andDr ! 0.1 rad2 s&1, we deÞned tumbling on the subinterval
aroundtmax, where

jju$tmax%j &ju$t%jj%0:9 Du

with

Du ! max'ju$tmax%j &ju$t1%j; ju$tmax%j &ju$t2%j(:

RESULTS

In this section, we Þrst focus on our experimental results.
We present a large data set of experimentally recorded
swimming trajectories that we analyzed with respect to
speed and changes in the direction of propagation of the
bacteria. We then present a theoretical description that cap-
tures the main features of the swimming pattern ofP. putida.

P. putida displays two distinct classes of turning
events

P. putidaexhibits a typical bacterial swimming pattern that
consists of a sequence of straight runs interrupted by turning
events. A closer look reveals that for most turns, the angle of
propagation changes by ~f1 ! 180" , i.e., the cell reverses its
direction of motion. The reversals are rapid events that take
0.135 0.004 s on average. An example of a trajectory that
displays several reversals can be seen inFig. 1A. In Fig. 1B,
the corresponding swimming speed and absolute value of
the angular velocity are shown as a function of time. The
sharp localized peaks in the angular velocity together with
the rapid jumps in the swimming speed conÞrm that rever-
sals are short and sudden events that interrupt the constant
swimming motion of the persistent runs.

To a lesser extent, a second class of turning events can
also be observed. In those cases, the direction of propaga-
tion before and after the event remains similar, resulting
in a turning angle of ~f2 ! 0" . In contrast to the reversals,
the phenomenology of thef2-events is more diverse. In
particular, two types off2-events can be distinguished.

1. We observe pausing events that interrupt the persistent
swimming for a certain time. During this time, the
body of the bacterium performs a jiggling motion before
resuming the next run. InFig. 1 C, an example of a tra-

jectory with a pausing event can be seen. When
following the swimming speed and angular velocity
over time, we notice that the speed remains close to
zero during the pausing, whereas the angular velocity
shows a sequence of large repeated spikes that reßect
the jiggling motion of the cell body (seeFig. 1 D).

2. We notice rapid speed changes in some of our trajec-
tories. A representative case can be seen inFig. 1 E.
Here, the angular velocity remains low throughout the
time series, while the swimming speed undergoes a clear
change (seeFig. 1 F).

Movie S1, Movie S2, Movie S3, Movie S4, Movie S5, and
Movie S6 showing examples of the different turning
scenarios, among them the three example trajectories dis-
played inFig. 1can be found in theSupporting Material.

The turning angle distribution reßects the presence of two
classes of turning events in the swimming trajectories of
P. putida. As can be seen inFig. 2, the distribution has a
bimodal shape with a preferred turning angle atf1 ! 180" .
A second smaller peak is found atf2 ! 0" . Even though
the peak positions and heights differ, the bimodal turning
angle distribution is in agreement with earlier results (17,18).

Upon a reversal of the swimming direction,
the speed changes by a factor of two

A closer analysis of the trajectories reveals that in many
cases, the swimming speeds before and after a reversal event
are different. In particular, the time series shown inFig. 1B
suggests that upon a reversal, the speed changes by a factor
of two. We have systematically analyzed all reversal events
and evaluated the difference between the swimming speed
before the reversal,vk, and after the reversal,vk) 1, normal-
ized by the sum of both speeds,Q ! (vk) 1 & vk)/(vk) 1 ) vk).
If vk) 1 andvk differ by a factor of two,Q takes the value
of 51/3. InFig. 3, we show distributions ofQ for reversals
(A) andf2-events (B) separately. InFig. 3 A, the two max-
ima at Q ! 51/3 clearly indicate that in the case of a
reversal event (f1 ! 180" ), the swimming speed indeed
changes by a factor of two. The speed distribution of

FIGURE 2 Turning angle distribution of a population of swimming
P. putidacells. Maxima atf1 ! 180" andf2 ! 0" indicate the two classes
of turning events. To see this Þgure in color, go online.
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trajectories with reversal events is shown inFig. 4 A. Here,
the presence of two distinct swimming speeds is less
obvious, indicating that the speed values are different
from one cell to another. Nevertheless, a close match of
the speed distribution can be obtained by the Þtted sum of
two Gaussians. The center values and widths of the two
Gaussians yield estimates of the two swimming speeds
(mi) and their standard deviations (si) averaged over all
reversal events,

m1 ! 19:4 mm s&1; s1 ! 8:7 mm s&1; and

m2 ! 38:3 mm s&1; s2 ! 9:5 mm s&1

"
m2

m1

! 1:97

#
:

For thef2-events, on the other hand, a different behavior is
observed (seeFig. 3 B). Even though theQ values show a
broad distribution also in this case, the maximal probability
is centered at ~Q ! 0, i.e., there is no systematic difference
in the swimming speeds before and after thef2-events.

Run times and swimming speeds are not
correlated

Are the two alternating swimming speeds related to distinct
run times?

In Fig. 4 B, the run-time distribution for trajectories
with reversal events is shown (note that this is the majority
of trajectories, ~66%). The run-time distribution shows
a maximum at ~1 s and yields an average run time of
1.50 5 0.07 s. The reversal events, for comparison, are
much faster than the runs and take only 0.135 0.004 s
on average.

Let us now consider correlations between the swimming
speeds and run times. InFig. 5 A, a scatter plot is shown,
where each point marks the run time that corresponds to
a run with a given average speed. No correlation between
the speed and the run time is observed, i.e., for each value
of the swimming speed, we Þnd the same distribution of
run times. We have furthermore determined the run-time
distributions separately for slow and fast runs. In both
cases, similar distributions are found (data shown in the
Supporting Material). We have also considered correlations
between the durations of successive runs that are interrup-
ted by a reversal event. The corresponding scatter plot is
displayed inFig. 5 B. Its shape can be explained by an
overlay of two independent distributions of the type shown
in Fig. 4 B. Thus, also in this case, no correlations are
found.

A simple random-walk model captures the
mean-square displacement of P. putida

Based on the analysis of the swimming trajectories pre-
sented above, we Þrst propose a simple random-walk
model to capture the macroscopic spreading of a population
of swimming P. putida cells. Here, it was our goal to
obtain as much analytical insight as possible by including

A B

FIGURE 3 Difference between the swimming speeds before and after a
turning event, normalized by the sum of the two swimming speeds (denoted
by Q in the main text). (A) Distribution of this quantity for reversal events
(f1 ! 180" ). (Dashed vertical lines) Positions ofQ ! 51/3. The maxima
at51/3 indicate that the swimming speeds before and after a reversal differ
by a factor of two. (B) Distribution for turning events withf2 ! 0" . On
average, no systematic difference between the swimming speeds before
and after the turning event can be observed. To see this Þgure in color,
go online.

A B

FIGURE 4 Analysis of trajectories with reversal events only (f1 ! 180" ).
(A) Distribution of swimming speeds (average value for each run,red bars)
Þtted by a sum of two Gaussian distributions (solid line). The mean run
speeds (mi) and standard deviations (si) of the two Þts arem1 ! 19.4mm
s&1, s1 ! 8.7 mm s&1; andm2 ! 38.3mm s&1, s2 ! 9.5 mm s&1 (m2/m1 !
1.97), respectively. (B) Distribution of run times (green bars) with a
mean run time oft ! 1.505 0.07 s. Only runs between two reversal events
are included. The exponential Þt (dashed line) and the Þt of ag-distribution
(solid line) are uniquely deÞned by the mean run timet and contain no
further Þt parameter. To see this Þgure in color, go online.

A B

FIGURE 5 Run time and speed correlations for trajectories with reversal
events only (f1 ! 180" ). (A) Scatter plot of the run time as a function of
average swimming speed. (Dots) Runs between two reversal events. No
correlation between the duration of a run and its average speed is observed.
(B) Scatter plot of the run time as a function of the duration of the previous
run. No correlations between the run times of successive runs are found. To
see this Þgure in color, go online.
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only the most prominent characteristics of the swimming
pattern into the model. Because the swimming pattern is
dominated by the reversal events, we concentrate our theo-
retical description on the subset of trajectories that contain
reversal events only (f1 ! 180" , 66% of the total number
of trajectories). The following features are included in our
model:

1. We approximate the run times as exponentially distrib-
uted with a mean run timet, implying that runs are inter-
rupted at a turning ratel ! t&1. According to the
distribution of run times inFig. 4 B, we sett ! 1.50 s.
Becauset exceeds the duration of reversal events by
one order of magnitude, our model neglects the duration
of the reversals.

2. Similar to earlier work on the run-and-tumble motion of
E. coli (22), we express the directional persistence
between successive runs by the persistence parameter
a ! h cosfi , deÞned as the mean cosine of the turning
angle f. An ideal reversal would correspond toa !
&1; for our data set, we obtaina ! & 0.95, which reßects
the width of the peak atf1 ! 180" in the turning angle
distribution ofFig. 2.

3. Each turning event comes along with a change in the bac-
teriumÕs speedv(t). We assume that the speed alternates
between two constant valuesv1 andv2 (recallFig. 1B for
illustration). The values ofv1 andv2 are estimated by the
mean valuesm1,2 from the Gaussian Þts presented in
Fig. 4 A.

4. We include ßuctuations in our model such that the persis-
tent runs are not perfectly straight, due to rotational
diffusion of the velocity direction. The origin of rota-
tional diffusion is a combination of intrinsic ßuctuations
within the signaling network and the propulsion machin-
ery of the cells on the one hand, and thermal noise in
the ßuid on the other hand. We denote the cellÕs velocity
direction by the unit vectore(t). During a run, its
dynamics is governed byhe(t),e(0)i ! exp(&2Drt),
where Dr is the rotational diffusion constant (23,24).
Using the directional autocorrelation function of the
runs (see theSupporting Material), we obtain Dr !
0.023 rad2 s&1. This value is consistent withDr !
0.062 rad2 s&1 for E. coli (25). The corresponding time-
scale, 1/(2Dr) ! 21.7 s, during which directional correla-
tions decay, clearly exceeds the duration of the runs.

Based on the properties described above, we can phrase a
model that can be solved analytically (see theSupporting
Material for details of the derivation).

We Þrst determine the velocity autocorrelation function,

hv$t%, v$0%i ! e&$l) 2Dr%t

"
v21 ) v22

2
cosh$lat%

) v1v2sinh$lat%
#
:

(1)

In particular, fora ! 1 andDr ! 0, Eq. 1 yields the speed
autocorrelation functionhv(t)v(0)i , which decreases mono-
tonically from

v21 ) v22
2

for t ! 0 to
$
$v1 ) v2%

2

%2

for large times. Setting the speeds to unity, Eq. 1 corre-
sponds to the directional autocorrelation function

he$t%, e$0%i ! exp$ & 'l$1 & a% ) 2Dr(t%;

in agreement with Lovely and Dahlquist (22). In the Sup-
porting Material, we present the derivation of Eq. 1 and
demonstrate how it is related to the MSDh[r(t) Ð r(0)]2i
of the random walker. InFig. 6, the experimental result
for the MSD is shown (red dots) together with the analytical
result (dashed blue line). At short times, the MSD displays a
ballistic regime, whereas for larger times we approach
the diffusive limit. Our simple model thus captures the
MSD reasonably well, also with very good agreement at
short times.

The diffusive regime of the random walk is characterized
by the diffusion coefÞcient

D ! lim t/N

&
'r$t% &r$0%(2

'

6t

(in three dimensions). ForD, we obtain

D !
2Dr

(
v21 ) v22

)
) l

(
v21 ) v22 ) 2av1v2

)

6'2Dr ) l$1 & a%('2Dr ) l$1 ) a%(
: (2)

For equal swimming speedsv, Eq. 2 reduces to the well-
known result (22)

D !
v2

3'2Dr ) l$1 & a%(
:

To illustrate the signiÞcance of the two alternating speeds
v1, v2, we compare the diffusion coefÞcient from Eq. 2 to
a random walker moving constantly at the mean speed

FIGURE 6 Mean-square displacement. The experimental data (red) is
shown together with the results of a simple analytical model (dashed
blue line), an improved model (black), and a full numerical simulation (yel-
low). To see this Þgure in color, go online.
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v ! (v1 ) v2)/2 with diffusion constantDv. Using Eq. 2, we
can demonstrate thatD R Dv. This shows that the alter-
nating speeds enhance the diffusion coefÞcient. Thus, bacte-
ria undergoing run-and-reverse motion, with alternating
velocities, spread faster then bacteria showing run-and-
reverse behavior with a constant intermediate velocity. For
the presented parameters ofP. putida, we obtainD ! 580
mm2 s&1z 2.8# Dv. Note that the experimental trajectories
are too short in time to reliably estimate the diffusion coef-
ÞcientD from the data. Instead, we can compare the predic-
tion of the analytical model to an estimate ofD based on the
reÞned model presented below.

A nonexponential run-time distribution leads to
negative values in the directional autocorrelation

To test the model description proposed above, we have
analyzed directional autocorrelations in our data and
compared the experimental results to the modeling predic-
tion (see theSupporting Materialfor details). In Fig. 7,
the autocorrelation functions of the direction (A), the speed
(B), and the velocity of propagation (C) are shown. When
comparing the experimental results (red data points) to
the prediction of our simple random-walk model (blue
dashed line), it becomes clear that the model does not
recover one of the most prominent features of the experi-
mental curves. The directional autocorrelation of the exper-
imental trajectories becomes negative for intermediate times
at ~2 s. This observation cannot be explained based on our
simple random-walk model.

We therefore propose an extended version of our model
that takes into account the nonexponential shape of the
run-time distribution displayed inFig. 4 B. We observe
that the distributionp of run timest can be well described
by ag-distribution with a shape parameter of 2,

p$t% !
t

$t=2%2
exp

"
&

t

t=2

#
; (3)

wheret denotes the mean run time. It increases linearly for
small times and features both the pronounced maximum and

the exponential tail for large times. In our more detailed
model, the distribution of the mean run speeds of cells is
also taken into account. Based on the result of our Þtting
in Fig. 4 A, we now treat the speedsv1,2 as Gaussian vari-
ables with meansm1,2 and variancess1,2. For each new
run event, the speed is drawn according to the corresponding
Gaussian.

In this more realistic model, taking into account the
peaked run-time distribution, we recover negative direc-
tional autocorrelations. However, they are not as pro-
nounced as in the experimental data. Several additional
aspects need to be taken into account to reduce this discrep-
ancy (see theSupporting Materialfor a further discussion of
these points).

The tracked trajectories usually start with a run, which in
general began before the recording. In contrast to exponen-
tially distributed run times, where the probability to tumble
within a small time interval is time-independent, we now
have to consider that the distribution of the Þrst run times
is different. In theSupporting Material, we calculate the cor-
responding renewal distribution of the Þrst run time for the
g-distribution (Eq. 3) and show that the mean is given by
0.75t. This result is consistent with the experimental data
for which the average Þrst run time is 1.28 sz 0.85t.
Further inspection of the mean run speeds shows that for
62% of our trajectories, a cell starts with the larger speed
v2; it turns out that this fact needs to be implemented to
satisfactorily explain the speed autocorrelation function.
Finally, it is important to realize that our trajectories are
relatively short in time with an average duration of 3.4 s.
Hence, the majority of trajectories contains only a single
reversal event. This also has an effect on the directional
autocorrelation function.

We performed numerical simulations of our extended
model, taking the above aspects into account. The results
of these simulations show a remarkably better agreement
with the experimental data than the simple model. For the
MSD in Fig. 6the result of the extended model is displayed
in black and gives a clear improvement with respect to the
simple model (dashed blue line). Long-time simulations
up to 104 s yield a diffusion coefÞcient of ~D ! 470mm2

A B C

FIGURE 7 Autocorrelation functions of direction (A), speed (B), and velocity of propagation (C). In each panel, the experimental data (red) is shown
together with the results of a simple analytical model (dashed blue line), an improved model (black), and a full numerical simulation (yellow). To see
this Þgure in color, go online.
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s&1 (compared to the value ofD ! 580mm2 s&1 for the sim-
ple model). In addition, the autocorrelation functions in
Fig. 7 are captured much closer by the extended model. In
particular, it reproduces the negative dip of the directional
autocorrelations, as well as the steep decrease in the speed
autocorrelations after ~1 s.

We also present numerical simulations inFigs. 6and 7
(yellow curves), which are obtained by taking the exact
sequences of run times and mean run speeds of each exper-
imental trajectory. Note that details of speed ßuctuations are
not required; turning angles and the inßuence of rotational
diffusion are only modeled according to our approach
described above. We Þnd that the MSD and all correlation
functions are very well reproduced. This is a further justiÞ-
cation that the random-walk approach is appropriate to
describe the motility pattern ofP. putida. In particular, the
shape of the directional autocorrelation function including
the negative dip is also very well reproduced. As the
simulation neglects speed ßuctuations during the runs, we
observe that the initial value of the speed correlation func-
tion is slightly below the experimental value.

DISCUSSION

We have investigated the swimming behavior of the soil
bacteriumP. putida. We observed a typical bacterial swim-
ming pattern consisting of a sequence of straight runs that
are interrupted by turning events. A closer analysis of the
turning angles revealed a bimodal distribution with a
preferred turning angle atf1 ! 180" and a second smaller
maximum atf2 ! 0" . Thus, after having completed a run,
a swimmingP. putidacell will either reverse its direction
or, less likely, continue to swim in the same direction. The
bimodal character of the turning angle distribution of
P. putidahas already been reported earlier (17,18). Contrary
to their result, we Þnd the large angle to be the more likely
one. In addition, the positions of the two peaks in the histo-
gram differ. Note, however, that Davis et al. (18) have
already shown that the peak positions and heights may
vary between different populations and sensitively depend,
for example, on the cell density of the culture. Given the dif-
ferences in experimental conditions, we may thus conclude
that our results are in qualitative agreement with earlier re-
ports in the sense thatP. putidadisplays a bimodal turning
angle distribution with a peak at low and one at high values
of the turning angle.

Run-and-reverse patterns have been reported for numer-
ous monotrichously ßagellated species such asPseudoalter-
omonas haloplanktisor Shewanella putrefaciens(12,13).
It is considered the typical swimming behavior of marine
bacteria (11). In the case of monotrichously ßagellated
swimmers, the reversal is induced by a change in the rota-
tional direction of the motor that propels the ßagellum.
Upon such a reversal, the mode of propagation of the bacte-
rium changes from pushing to pulling.

For lophotrichously ßagellated bacteria likeP. putida, the
ßagellar dynamics during a reversal event have never been
imaged directly. It has been conjectured that reversals in
the swimming trajectories ofP. putida may be caused by
synchronous reversals of the ßagellar motors (16). In this
case, the entire ßagellar bundle would switch from a push-
ing to a pulling mode, analogous to the single ßagellum of
monotrichously ßagellated species. On the one hand, there
are strong indications that a pulling ßagellar bundle may
be unstable and will experience jamming (8,26); on the
other hand, to continuously remain in the pushing mode,
the cell body would have to turn by 180" during a reversal.
But even when imaging with a twofold increased frame rate
(50 frames/s), we never observed the turning of a cell body
upon a reversal. Moreover, a simple estimate shows that
the force required to turn the cell body in a time below
the resolution of our 50-Hz imaging exceeds the normal
propulsive force of a bacterium by a factor of eight.

We performed additional recordings of cells swimming
close to a solid/liquid interface to get further insight into
the swimming mechanism (data shown in theSupporting
Material). We observed that the cell density increased
in the vicinity of the interface as compared to the bulk
ßuid. Furthermore, in agreement with earlier results from
E. coli, the curvature of cell trajectories was increased at
the solid/liquid interface (27). Cells preferentially turned
to the right (negative angular velocity).

How can we reconcile these observations?
A possible scenario to stay in the pushing mode upon a

reversal without turning the cell body would be that
P. putida ßips the direction of the ßagellar Þlaments, so
that they point backward even though the side of the
cell where the motors are located is pointing to the front.
Note that a similar ßagellar mechanism has been proposed
earlier for the reversal of bacterial locomotion at an
obstacle (28).

This scenario is in agreement with the negative angular
velocity observed for near-boundary swimming because a
twist to the right would be expected both before and after
the reversal. From the increased cell density near a bound-
ary, on the other hand, no conclusions on the ßagellar
arrangement can be drawn. Although hydrodynamic interac-
tions predict an increased near-wall density for cells moving
in a pushing mode (29,30), the inßuence of such interactions
on cell-surface scattering was shown to be negligible (31).
The accumulation of cells near the interface could be
instead attributed to collision effects, independent of the
propulsion mode (32,33). To unambiguously clarify the
ßagellar dynamics during a reversal event, direct imaging
of the ßagella is required. Unfortunately, so far our ßuores-
cence staining experiments have not been successful
because the bacteria were rapidly damaged by the high
phototoxicity of the ßuorescence excitation light. The
ßagellar dynamics ofP. putida during a reversal event
thus remains an open question.
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In addition to reversals with an angle off1 ! 180" , a sec-
ond type of turning event was observed with an angular
change off2 ! 0" between the successive runs.

What is the purpose of this swimming pattern?
The photosynthetic bacteriumRhodobacter sphaeroides

is equipped with a single ßagellum that can only rotate in
one direction. Its trajectories consist of straight runs that
are interrupted by pausing events with a duration of up to
several seconds. In this case, apart from rotational diffusion
during the runs, the cells have only limited possibilities to
reorient and randomize their direction of movement. On
the one hand, Brownian motion acting on the cell body
during the intermittent pausings induces changes in the
direction of motion (34); on the other hand, polymorphic
transitions that are initiated when the motor resumes rota-
tion may reorient the cell body (35). Here, we conjecture
that thef2 events may serve a similar purpose. They provide
an additional degree of freedom thatP. putidamay utilize to
modulate its swimming behavior to affect, for example, the
overall diffusion coefÞcient of its motion. In a recent anal-
ysis based on a tethering assay, the existence of pausings
in the rotation of the ßagellar motor ofP. putidahas been
clearly conÞrmed (36).

Note also that additional turning strategies have been
developed to enhance the efÞciency of reorientation. For
monotrichously ßagellated species that can reverse the rota-
tion of their ßagellar motor, the spread in the angle of the
reversal events is, in addition to a small degree of directional
diffusion during the runs, the only feature by which many
of them can enhance changes in their orientation that
are required, e.g., for chemotactic responses. Recently, an
additional type of turning event has been identiÞed in the
swimming pattern ofVibrio alginolyticus, a bacterium that
also uses a single polar ßagellum to drive its motion (14).
After a reversal, the ßagellum ofV. alginolyticusperforms
a ßick that randomly reorients its swimming direction.
This allowsV. alginolyticusto efÞciently adapt its motion
in response to chemotactic stimuli.

As a prominent feature of the swimming pattern of
P. putida, we observed that, upon a reversal, the swimming
speed changed, on average, by a factor of two. A difference
in swimming speed between forward and backward motion
has also been reported forV. alginolyticus(37) but was later
attributed to near-wall effects (38). In our case, recordings
are taken far away from the boundaries of the chamber,
so that wall effects can be excluded. However, whereas
the motion ofV. alginolyticusis driven by a single polar
ßagellum, P. putida is decorated with a tuft of several
ßagella at one end of the cell. If indeed a reversal marks a
ßipping of the orientation of the ßagellar Þlaments, different
propulsion efÞciencies and drag coefÞcients may be the
reason for the different speeds observed. What sets the value
of the factor between the two swimming speeds and how
it depends on the environmental conditions remains to be
explored in future studies. Note that we did not observe

correlations between the run time and the mean run speed.
This is consistent with recent results by others showing
that the rotary motor ofP. putidacells spends similar frac-
tions of time in the modes of clockwise and counterclock-
wise rotation (36).

We have proposed a theoretical description that includes
the alternating swimming speeds. To our knowledge, it is the
Þrst time that alternating speeds are incorporated into a
model of this kind. Our approach clearly shows the minimal
requirements to account for the different features observed
in our data. In its simplest, analytically accessible version,
including exponentially distributed run times, the persis-
tence parametera, rotational diffusion, and the two alter-
nating swimming speeds, our model yields an accurate
approximation of the MSD, i.e., the macroscopic spreading
of a population ofP. putidacells. The directional autocorre-
lation function, however, can be only recovered in an
extended version of the model. In particular, the nonexpo-
nential shape of the run-time distribution has to be included
into the model to capture the experimentally observed nega-
tive minimum in the directional autocorrelation. Moreover,
our model highlights that the two alternating speeds result in
an increased diffusion constant as compared to a bacterium
that swims with a constant intermediate speed. Thus, this
feature allows the bacterium to explore its environment
more efÞciently, without an increased energetic cost.

SUPPORTING MATERIAL

Six Þgures, six movies and other supplemental information are available at
http://www.biophysj.org/biophysj/supplemental/S0006-3495(13)01021-7.
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