7. Coherence resonance

7.1 in excitable systems
- FitzHugh-Nagumo system
- SNIPER model

7.3 in non-excitatable systems
- Stuart-Landau oscillator
- Duffing–van der Pol oscillator

7.4 Synthetic gene oscillator

We consider a population of (cells) gene synthetic relaxation oscillators coupled via intercellular signaling mechanism (quorum sensing mechanism).

Example for quorum sensing mechanism → Hawaiian bobtail squid → A. fischeri (a bioluminescent bacterium) in the light-producing organ: free living cells do not luminesce → only when they are highly concentrated and the AI (signalling molecules) is at high concentration.
Synthetic biology - biology + engineering

- designing and constructing biological modules, biological systems, biological machines for various purposes.
- artificial design and engineering of biological systems and living organisms for purposes of improving applications for industry or biological research.

- genetic switch
- genetic oscillator

<table>
<thead>
<tr>
<th>gene expression</th>
</tr>
</thead>
</table>
| information from a gene is transformed into (used in the synthesis) a functional gene product (proteins or non-protein coding genes - RNA)

Steps in the gene expression: transcription, RNA splicing, translation.

Genes are expressed by being transcribed into RNA and this transcript may then be translated into protein.

The genetic circuit we consider contains a switch composed of two genes: u (lacI) and v (cI857), that inhibit each other by repressing transcription from their promoters P1 and P2.

Promoter is a region of DNA that initiates transcription.
N is the total number of cells; i is the cell index; the activity of the promoters P_1, P_2 and P_3 are described by the Hill functions $f(v)$, $g(u)$ and $h(w)$:

$$f(v) = \frac{1}{1 + v^p}, \quad g(u) = \frac{1}{1 + u^q}, \quad h(w) = \frac{w^2}{1 + w^2}.$$

The parameters d_1 and d_2 define the expression strength of the toggle switch genes and d_3 represents the activation of u from promoter P_3. The expression of the gene w is measured by the parameter d_4.

This circuit is known to demonstrate bistable behavior. The promoter P_2 also drives the expression of a third gene w (luxI) that produces AI, a small autoinducer molecule which is able to diffuse in and out of the cell. The AI activates transcription of the promoter P_3. Placing a second copy of the gene w under the control of this promoter provides both an additional feedback loop to the switch and a mechanism that couples the switch to all cells in the population via quorum sensing.

The autoinducer molecules can be, therefore, inside and outside the cell, we have extracellular concentration of AI and intracellular concentration of AI.
Parameter ε of the model is a time scale separation parameter: the dynamics of the cells is separated into two different time scales: fast dynamics of u, v and w and slow dynamics of w_1. We fix $\varepsilon = 0.01$.

The dynamics of AI introduces an additional feedback loop into the switch and can lead to oscillatory behaviour even in isolated cells. The coupling coefficients d and d_2 depend on the diffusion of the AI through the cell membrane.

![Graph](image)

Single cell

λ_1 - bifurcation parameter \rightarrow strength of the expression for the gene u.

$\vartheta = 0$ (no noise)

$\vartheta \neq 0$

$\lambda = 2.85$

even for $\lambda = 2.85$

for which in the deterministic case there exist only one attractor, the stable focus F, the system performs an oscillatory behaviour similar to the motions on the limit cycle.
Here we consider the distributions of the phase variables (not the amplitude).

Coherence resonance is observed \rightarrow for an intermediate noise intensity, the width of the spectrum becomes minimal.

What does CR mean for the cell?

There is an optimal value of noise (stochastic influence) for which the genetic unit displays most ordered dynamical behaviour \rightarrow noise is profitable for the cell.

Genetic networks in the presence of noise ($N=2; N=500$)

For coupled cells one can also detect stochastic P-bifurcations.

Due to the stochastic influence the expression of proteins can be confined in several different concentration intervals, some of which are more probable than the others depending on how strong is the noise in the system.

The cells are initially identical and produce protein with one concentration (one main peak \rightarrow (stable focus)). The occurrence of new intervals of protein production means that cells function differently \rightarrow different protein concentrations in identical cells mean different cellular functionality.
Under stochastic influence the protein production is defined by the probability distribution of the phase variable which represents one of the genes.

Changing stochastic conditions \rightarrow different prob. distributions

\downarrow

the probability of expressing certain protein concentration is different

\downarrow

different cell functionality

\downarrow

differentiation of the cells into various types.