NON-MARKOVIAN QUANTUM FEEDBACK CONTROL OF PHOTON STATISTICS AND QUANTUM MANY BODY DYNAMICS

Alexander Carmele*
Technische Universität Berlin, Institut für Theoretische Physik, Germany

*in collaboration with
N. Nemet, L. Droenner, M. Strauß, S. Reitzenstein, S. Parkins, M. Heyl, and A. Knorr
• Non-Markovian signatures in Quantum Optics: Wigner delay
• Bypassing non-Markovian decoherence via quantum feedback
• Selective photon-probability control in the two-photon regime
• Stabilizing a discrete time crystal against dissipation
• **Non-Markovian signatures in Quantum Optics: Wigner delay**
 • Bypassing non-Markovian decoherence via quantum feedback
 • Selective photon-probability control in the two-photon regime
 • Stabilizing a discrete time crystal against dissipation

with Max Strauß, Stephan Reitzenstein
Non-Markovian signatures in Wigner delays

Wigner delay occurs between absorption and emission processes of a single quantum dot

 Strauß, AC et al, PRL 122, 107401 (2019); arXiv: 1805.06357v1
Non-Markovian signatures in Wigner delays

Wigner delay occurs between absorption and emission processes of a single quantum dot

Wigner delay also strongly dependent on the excitation power if not in the Heitler regime

\[\Omega(t) = \Omega_L \sqrt{\frac{\pi}{(2\tau^2)}} \exp \left[-\frac{(t-t_0)^2}{2\tau^2} \right] \]

Strauß, AC et al, PRL 122, 107401 (2019); arXiv: 1805.06357v1
Non-Markovian signatures in Wigner delays

Wigner delay occurs between absorption and emission processes of a single quantum dot.

Wigner delay also strongly dependent on the excitation power if not in the Heitler regime.

\[\Omega(t) = \Omega_L \sqrt{\frac{\pi}{2\tau^2}} \exp \left[-\frac{(t-t_0)^2}{2\tau^2} \right] \]

Strauß, AC et al, PRL 122, 107401 (2019); arXiv: 1805.06357v1
Non-Markovian signatures in Wigner delays

Wigner delay occurs between absorption and emission processes of a single quantum dot.

Wigner delay strongly dependent on the T1-time of the quantum dot, here $T1 = (700 \pm 100)$ ps.

Wigner delay also strongly dependent on the excitation power if not in the Heitler regime.

$$\Omega(t) = \Omega_L \sqrt{\frac{\pi}{2\tau^2}} \exp\left[-\frac{(t-t_0)^2}{2\tau^2}\right]$$
Non-Markovian signatures in Wigner delays

Wigner delay induced by a single quantum dot:

Markovian theory via Lindblad-type dephasing

\[
\dot{\rho} = -\frac{i}{\hbar}[H(t), \rho] + \frac{\Gamma}{2}D[\sigma_{12}]\rho + \frac{\gamma_p}{2}D[\sigma_{22}]\rho
\]

\[
\dot{\rho}_{22} = -\Gamma \rho_{22} + 2\text{Im}[\Omega(t)\rho_{12}]
\]

\[
\dot{\rho}_{12} = (i\Delta - \Gamma/2 - \gamma_p)\rho_{12} - i\Omega(t)(2\rho_{22} - 1)
\]
Wigner delay induced by a single quantum dot:

\[T_1 = (700 \pm 100) \text{ ps} \]

Markovian theory via Lindblad-type dephasing

\[
\begin{align*}
\dot{\rho} &= -\frac{i}{\hbar}[H(t), \rho] + \frac{\Gamma}{2}D[\sigma_{12}]\rho + \frac{\gamma_p}{2}D[\sigma_{22}]\rho \\
\dot{\rho}_{22} &= -\Gamma \rho_{22} + 2\text{Im}[\Omega(t)\rho_{12}] \\
\dot{\rho}_{12} &= (i\Delta - \Gamma/2 - \gamma_p)\rho_{12} - i\Omega(t)(2\rho_{22} - 1)
\end{align*}
\]

Bloch equations solved in the adiabatically limit

\[
\tau_W = \frac{d\phi}{d\omega} = \frac{1}{\gamma + \Delta^2/\gamma}
\]

\[
\gamma = \frac{\Gamma}{2} + \gamma_p
\]
Non-Markovian signatures in Wigner delays

Wigner delay induced by a single quantum dot:

\[T_1 = (700 \pm 100) \text{ ps} \]

Markovian theory via Lindblad-type dephasing

\[\dot{\rho} = -\frac{i}{\hbar} [H(t), \rho] + \frac{\Gamma}{2} D[\sigma_{12}] \rho + \frac{\gamma_p}{2} D[\sigma_{22}] \rho \]

\[\dot{\rho}_{22} = -\Gamma \rho_{22} + 2 \text{Im}[\Omega(t) \rho_{12}] \]

\[\dot{\rho}_{12} = (i\Delta - \Gamma/2 - \gamma_p) \rho_{12} - i\Omega(t)(2\rho_{22} - 1) \]

Bloch equations solved in the adiabatically limit

Choose the pure dephasing to reproduce for a fixed radiative lifetime constant

\[\tau_W = \frac{d\phi}{d\omega} = \frac{1}{\gamma + \Delta^2/\gamma} \]

\[\gamma = \frac{\Gamma}{2} + \gamma_p \]
Non-Markovian signatures in Wigner delays

Wigner delay induced by a single quantum dot:

\[T_1 = (700 \pm 100) \text{ ps} \]

Markovian theory via Lindblad-type dephasing

\[
\dot{\rho} = -\frac{i}{\hbar}[H(t), \rho] + \frac{\Gamma}{2}D[\sigma_{12}]\rho + \frac{\gamma_p}{2}D[\sigma_{22}]\rho
\]

\[
\dot{\rho}_{22} = -\Gamma \rho_{22} + 2\text{Im}[\Omega(t)\rho_{12}]
\]

\[
\dot{\rho}_{12} = (i\Delta - \Gamma/2 - \gamma_p)\rho_{12} - i\Omega(t)(2\rho_{22} - 1)
\]

Bloch equations solved in the adiabatically limit

Choose the pure dephasing to reproduce for a fixed radiative lifetime constant

\[
\tau_W = \frac{d\phi}{d\omega} = \frac{1}{\gamma + \Delta^2/\gamma}
\]

\[
\gamma = \frac{\Gamma}{2} + \gamma_p
\]

Markovian theory fails to reproduce both limits and not the asymmetries between red- and blue-detuned Wigner delays
Non-Markovian signatures in Wigner delays

Wigner delay in the presence of electron-phonon interaction:

\[H_{\text{dec}} = \sigma_{22} \sum_q g_{12}^q \left[b_q^\dagger(t) + b_q(t) \right] \]

Non-Markovian theory via semiconductor Bloch equations

\[
\begin{align*}
\partial_t \langle \sigma_{22} \rangle &= -2\Gamma \langle \sigma_{22} \rangle + 2\text{Im} \left[\Omega(t) \langle \sigma_{12} \rangle \right], \\
\partial_t \langle \sigma_{12} \rangle &= -(\Gamma + i\Delta) \langle \sigma_{12} \rangle - i\Omega(t) \left(2\langle \sigma_{22} \rangle - 1\right) \\
&\quad - i \sum_q g_{12}^q \langle b_q \sigma_{12} \rangle + g_{12}^{q*} \langle b_q^\dagger \sigma_{12} \rangle
\end{align*}
\]
Non-Markovian signatures in Wigner delays

Wigner delay in the presence of electron-phonon interaction:

\[H_{\text{dec}} = \sigma_{22} \sum_q g_{12}^q \left[b_q^\dagger(t) + b_q(t) \right] \]

Non-Markovian theory via semiconductor Bloch equations

\[
\begin{align*}
\partial_t \langle \sigma_{22} \rangle &= -2\Gamma \langle \sigma_{22} \rangle + 2\text{Im} \left[\Omega(t) \langle \sigma_{12} \rangle \right], \\
\partial_t \langle \sigma_{12} \rangle &= -(\Gamma + i\Delta)\langle \sigma_{12} \rangle - i\Omega(t) \left(2\langle \sigma_{22} \rangle - 1\right) \\
&- i \sum_q g_{12}^q \langle b_q \sigma_{12} \rangle + g_{12}^{q*} \langle b_q^\dagger \sigma_{12} \rangle
\end{align*}
\]

Bloch equations solved numerically in the second-order Born level

\[
\begin{align*}
\partial_t \langle b_q \sigma_{12} \rangle &= -(\Gamma + i\Delta + i\omega_q)\langle b_q \sigma_{22} \rangle - i\Omega(t) \left(2\langle b_q \sigma_{22} \rangle - \langle b_q \rangle \right) - ig_{12}^{q*} \langle b_q^\dagger b_q \rangle \langle \sigma_{12} \rangle \\
\partial_t \langle b_q \sigma_{22} \rangle &= -(2\Gamma + i\omega_q)\langle b_q \sigma_{22} \rangle - i\Omega(t) \left(\langle b_q \sigma_{12} \rangle - \langle b_q^\dagger \sigma_{12} \rangle^* \right) + ig_{ve}^{q*} \langle b_q^\dagger b_q \rangle \langle \sigma_{22} \rangle
\end{align*}
\]
Non-Markovian signatures in Wigner delays

Wigner delay in the presence of electron-phonon interaction:

\[H_{\text{dec}} = \sigma_{22} \sum_q g_{12}^q \left[b_{q}^\dagger(t) + b_{q}(t) \right] \]

Non-Markovian theory via semiconductor Bloch equations

\[
\partial_t \langle \sigma_{22} \rangle = -2\Gamma \langle \sigma_{22} \rangle + 2\text{Im} \left[\Omega(t) \langle \sigma_{12} \rangle \right],
\]
\[
\partial_t \langle \sigma_{12} \rangle = -\left(\Gamma + i\Delta \right) \langle \sigma_{12} \rangle - i\Omega(t) \left(2\langle \sigma_{22} \rangle - 1\right) - i \sum_q g_{12}^q \langle b_q \sigma_{12} \rangle + g_{12}^{q*} \langle b_q^\dagger \sigma_{12} \rangle
\]

Bloch equations solved numerically in the second-order Born level

\[
\partial_t \langle b_q \sigma_{12} \rangle = -\left(\Gamma + i\Delta + i\omega_q \right) \langle b_q \sigma_{22} \rangle - i\Omega(t) \left(2\langle b_q \sigma_{22} \rangle - \langle b_q \rangle \right) - ig_{12}^{q*} \langle b_q^\dagger b_q \rangle \langle \sigma_{12} \rangle
\]
\[
\partial_t \langle b_q \sigma_{22} \rangle = -\left(2\Gamma + i\omega_q \right) \langle b_q \sigma_{22} \rangle - i\Omega(t) \left(\langle b_q \sigma_{12} \rangle - \langle b_q^\dagger \sigma_{12} \rangle^{*} \right) + ig_{ec}^{q*} \langle b_q^\dagger b_q \rangle \langle \sigma_{22} \rangle
\]

Coupling element input parameter from material theory of InAs/GaAs (bulk phonons)

Non-Markovian theory reproduces well both limits and the asymmetries

Strauß, AC et al, PRL 122, 107401 (2019); arXiv: 1805.06357v1
• Non-Markovian signatures in Quantum Optics: Wigner delay
• **Bypassing non-Markovian decoherence via quantum feedback***
• Selective photon-probability control in the two-photon regime
• Stabilizing a discrete time crystal against dissipation

with Nikolett Nemet, Scott Parkins
Feedback in the quantum regime

Experiments on the single quanta level feedback coupling:
- Experiments with cold atoms
 - Dissipative dynamics of a laser-driven emitter, position dependent
 - Note kink in signal

![Graph showing time evolution of G_m(2)(T) with markers for antinode, node, and slope at different times.](image)
Feedback in the quantum regime

Experiments on the single quanta level feedback coupling:
• Experiments with cold atoms
 • Dissipative dynamics of a laser-driven emitter, position dependent
 • Note kink in signal
 • Transmission controlled by the atom’s position at length L

Single atom-mirror:

a) Lock-in detection
 PMT 2

Probe
 \[\lambda/4\]
 Dielectric mirror

 Single atom+ mirror cavity

 \[\lambda/4\]

 Atom mirror

 \[\lambda/4\]
 PMT 3

 Lock-in detection

 PMT 1

Feedback in the quantum regime

Experiments on the single quanta level feedback coupling:

- Experiments with cold atoms
 - Dissipative dynamics of a laser-driven emitter, position dependent
 - Note kink in signal
 - Transmission controlled by the atom’s position at length \(L \)
 - Sinusoidal dependence

Single atom-mirror:

- Lock-in detection
- Single atom + mirror cavity
- PMT 2
- PMT 3
- \(g_0 \sin (kL) \)
- Photocurrent (counts/s)
- Mirror position (arb. units)

Goal: Stabilize an initial given coherence even in the presence of a reservoir at finite temperature

\[\hat{H} = \hat{H}_S + \hat{H}_R + \hat{H}_{LB}(\hat{b}, \hat{b}^\dagger, \hat{P}_i, \hat{P}_i^\dagger) \]

\[\hat{H}_R/\hbar = \omega_0 \hat{b}^\dagger \hat{b} + \int \left[\omega_k \hat{r}_k^\dagger \hat{r}_k + g_k (\hat{r}_k^\dagger \hat{b} + \hat{b}^\dagger \hat{r}_k) \right] dk \]

Whalen et al, Quant. Sci. and Tech. 44008 (2017)

Nemet, AC et al, arXiv: 1902.08328
Feedback in the quantum regime

Nemet, AC et al, arXiv: 1805.2317

Goal: Stabilize an initial given coherence even in the presence of a reservoir at finite temperature

\[\hat{H} = \hat{H}_S + \hat{H}_R + \hat{H}_{LB}(\hat{b}, \hat{b}^\dagger, \hat{P}_i, \hat{P}_i^\dagger) \]

\[\hat{H}_R/\hbar = \omega_0 \hat{b}^\dagger \hat{b} + \int \left[\omega_k \hat{r}_k^\dagger \hat{r}_k + g_k (\hat{r}_k^\dagger \hat{b} + \hat{b}^\dagger \hat{r}_k) \right] dk \]

\[\hat{H}_{LB}(t) = \hbar D[\hat{b}(t) + \hat{b}^\dagger(t)]\hat{P}^\dagger(t)\hat{P}(t) \]

Nemet, AC et al, arXiv: 1902.08328
Bypassing decoherence via quantum feedback

Nemet, AC et al, arXiv: 1805.2317

Goal: Stabilize an initial given coherence even in the presence of a reservoir at finite temperature

\[\hat{H} = \hat{H}_S + \hat{H}_R + \hat{H}_{LB}(\hat{b}, \hat{b}^\dagger, \hat{P}_i, \hat{P}_i^\dagger) \]

\[\frac{\hat{H}_R}{\hbar} = \omega_0 \hat{b}^\dagger \hat{b} + \int \left[\omega_k \hat{r}_k^\dagger \hat{r}_k + g_k (\hat{r}_k^\dagger \hat{b} + \hat{b}^\dagger \hat{r}_k) \right] dk \]

\[\hat{H}_{LB}(t) = \hbar D[\hat{b}(t) + \hat{b}^\dagger(t)] \hat{P}^\dagger(t) \hat{P}(t) \]

We assume a reservoir at T>0 with non-Ohmic spectral density with delay

\[J(\omega_k) = \sin^2 \left(\frac{\omega_k T}{2} \right) e^{-i\omega_k (t-t')} \]
Goal: Stabilize an initial given coherence even in the presence of a reservoir at finite temperature

\[\hat{H} = \hat{H}_S + \hat{H}_R + \hat{H}_{LB}(\hat{b}, \hat{b}^\dagger, \hat{P}_i, \hat{P}_i^\dagger) \]

\[\hat{H}_R/h = \omega_0 \hat{b}^\dagger \hat{b} + \int \left[\omega_k \hat{r}_k^\dagger \hat{r}_k + g_k (\hat{r}_k^\dagger \hat{b} + \hat{b}^\dagger \hat{r}_k) \right] dk \]

\[\hat{H}_{LB}(t) = \hbar D[\hat{b}(t) + \hat{b}^\dagger (t)] \hat{P}^\dagger (t) \hat{P}(t) \]

We assume a reservoir at T>0 with non-Ohmic spectral density with delay

\[J(\omega_k) = \sin^2 \left(\frac{\omega_k T}{2} \right) e^{-i \omega_k (t - t')} \]

Due to the linear coupling between the acoustic cavity mode and the reservoir, an exact solution exist

\[\hat{b}(t) = F(t) \hat{b}(0) + \int G_k(t) \hat{r}_k(0) dk \]

In the linear regime, the system dynamics can be exactly evaluated via a Feynman-Vernon influence functional or Suzuki-Trotter expansion

Nemet, AC et al, arXiv: 1805.2317

Nemet, AC et al, arXiv: 1902.08328
Bypassing decoherence via quantum feedback

With given initial conditions, the dynamics can be evaluated

\[\hat{\rho}_P(t) = \exp \left\{ \left(-i \int_0^t \hat{B}(t_1) dt_1 - \frac{1}{2} \int_0^t \int_0^{t_1} [\hat{B}(t_1), \hat{B}(t_2)] dt_2 dt_1 \right) \hat{P}^\dagger(0) \hat{P}(0) \right\} \hat{\rho}_P(0) \]

Our figure of merit is the survival time of an initial introduced coherence, e.g. via an delta pulse

\[\eta(t) = \frac{|\langle \hat{P}(t) \rangle|^2}{|\langle \hat{P}(0) \rangle|^2} \]
Bypassing decoherence via quantum feedback

With given initial conditions, the dynamics can be evaluated

\[\hat{\rho}_P(t) = \exp \left\{ -i \int_0^t \hat{\mathcal{B}}(t_1) dt_1 - \frac{1}{2} \int_0^t \int_0^{t_1} [\hat{\mathcal{B}}(t_1), \hat{\mathcal{B}}(t_2)] dt_2 dt_1 \right\} \hat{P}^\dagger(0) \hat{P}(0) \hat{\rho}_P(0) \]

Our figure of merit is the survival time of an initial introduced coherence, e.g. via an delta pulse

\[\eta(t) = \frac{|\langle \hat{P}(t) \rangle|^2}{|\langle \hat{P}(0) \rangle|^2} \]

Feedback stops via quantum interference the decoherence process – a synchronisation between the oscillators take place
Bypassing decoherence via quantum feedback

With given initial conditions, the dynamics can be evaluated

\[
\dot{\rho}_P(t) = \exp \left\{ \left(-i \int_0^t \hat{B}(t_1) dt_1 - \frac{1}{2} \int_0^t \int_0^{t_1} [\hat{B}(t_1), \hat{B}(t_2)] dt_2 dt_1 \right) \hat{P}^\dagger(0) \hat{P}(0) \right\} \dot{\rho}_P(0)
\]

Our figure of merit is the survival time of an initial introduced coherence, e.g. via an delta pulse

\[
\eta(t) = \frac{|\langle \hat{P}(t) \rangle|^2}{|\langle \hat{P}(0) \rangle|^2}
\]

Feedback stops via quantum interference the decoherence process – a synchronisation between the oscillators take place.

Delay time and phase-matching allow very long coherence times initial coherence at room temperature up to 200 ps

Nemet, AC et al, arXiv: 1805.2317
• Non-Markovian signatures in Quantum Optics: Wigner delay
• Bypassing non-Markovian decoherence via quantum feedback
• **Selective photon-probability control in the two-photon regime***
• Stabilizing a discrete time crystal against dissipation

with Leon Droenner, Nicolas Naumann, and Andreas Knorr
Quantum feedback in the nonlinear or many photon regime

For open quantum system case dynamics, the model is too detailed in the bath description:

\[
\frac{H}{\hbar} = \omega_0 c^\dagger c + \int dk \ \omega_k \ d_k^\dagger d_k + \int dk \ g_k \sin(kL)(d_k^\dagger c + c^\dagger d_k)
\]

within the interaction picture

\[
H_I(t) = -i\hbar g_0 \left(c^\dagger \left[\int dk (1 - e^{i2kL}) \ d_k e^{-i(\omega_k - \omega_0)t} \right] \right) - \text{h.c.}
\]

Pichler, Zoller PRL 116, 93601 (2016)
Quantum feedback in the nonlinear or many photon regime

For open quantum system case dynamics, the model is too detailed in the bath description:

\[
\hat{H}/\hbar = \omega_0 \hat{c}^\dagger \hat{c} + \int dk \, \omega_k \, \hat{d}_k^\dagger \hat{d}_k + \int dk \, g_k \sin(kL)(\hat{d}_k^\dagger \hat{c} + \hat{c}^\dagger \hat{d}_k)
\]

within the interaction picture

\[
\hat{H}_I(t) = -i\hbar g_0 \left(\hat{c}^\dagger \left[\int dk (1 - e^{i2kL}) \hat{d}_k \, e^{-i(\omega_k - \omega_0)t} \right] - \text{h.c.} \right)
\]

Integrate Schrödinger equation

\[
|\psi(t)\rangle_I = \mathcal{T} \left\{ \exp \left[-\frac{i}{\hbar} \int_0^t \hat{H}_I(t')dt' \right] \right\} |\psi(0)\rangle_I
\]

Pichler, Zoller PRL 116, 93601 (2016)
Quantum feedback in the nonlinear or many photon regime

For open quantum system case dynamics, the model is too detailed in the bath description:

\[
\frac{H}{\hbar} = \omega_0 c^\dagger c + \int dk \omega_k d_k^\dagger d_k + \int dk g_k \sin(kL)(d_k^\dagger c + c^\dagger d_k)
\]

within the interaction picture

\[
H_{I}(t) = -i\hbar g_0 \left(c^\dagger \left[\int dk (1 - e^{i2kL}) d_k e^{-i(\omega_k - \omega_0)t} \right] - \text{h.c.} \right)
\]

Integrate Schrödinger equation

\[
|\psi(t)\rangle_{I} = \mathcal{T} \left\{ \exp \left[-\frac{i}{\hbar} \int_{0}^{t} H_{I}(t')dt' \right] |\psi(0)\rangle_{I} \right\}
\]

and solve stroboscopically

\[
|\psi(\Delta t)\rangle_{I} = \exp \left[-\frac{g_0}{2} c \left(\Delta R(\Delta t) + e^{i\omega_0 \tau} \Delta R(\Delta t - \tau) \right) + \text{h.c.} \right] |\psi(0)\rangle_{I}
\]
Quantum feedback in the nonlinear or many photon regime

For open quantum system case dynamics, the model is too detailed in the bath description:

\[
\frac{H}{\hbar} = \omega_0 c^\dagger c + \int dk \ \omega_k \ d_k^\dagger d_k + \int dk \ g_k \sin(kL) (d_k^\dagger c + c^\dagger d_k)
\]

within the interaction picture

\[
H_I(t) = -i\hbar g_0 \left(c^\dagger \left[\int dk (1 - e^{i2kL}) d_k e^{-i(\omega_k - \omega_0)t} \right] - \text{h.c.} \right)
\]

Integrate Schrödinger equation

\[
|\psi(t)\rangle_I = \mathcal{T} \left\{ \exp \left[-\frac{i}{\hbar} \int_0^t H_I(t') dt' \right] |\psi(0)\rangle_I \right\}
\]

and solve stroboscopically

\[
|\psi(\Delta t)\rangle_I = \exp \left[-\frac{g_0}{2} c \left(\Delta R(\Delta t) + e^{i\omega_0 \tau} \Delta R(\Delta t - \tau) \right) + \text{h.c.} \right] |\psi(0)\rangle_I
\]

\[
|\psi(2\Delta t)\rangle_I = \exp \left[-\frac{g_0}{2} c \left(\Delta R(\Delta t) + e^{i\omega_0 \tau} \Delta R(\Delta t - \tau) \right) + \text{h.c.} \right] \exp \left[-\frac{g_0}{2} c \left(\Delta R(\Delta t) + e^{i\omega_0 \tau} \Delta R(\Delta t - \tau) \right) + \text{h.c.} \right] |\psi(0)\rangle_I
\]

Pichler, Zoller PRL 116, 93601 (2016)
Quantum feedback in the nonlinear or many photon regime

For open quantum system case dynamics, the model is too detailed in the bath description:

\[
\frac{H}{\hbar} = \omega_0 c^\dagger c + \int dk \omega_k d_k^\dagger d_k + \int dk g_k \sin(kL)(d_k^\dagger c + c^\dagger d_k)
\]

within the interaction picture

\[
H_I(t) = -i\hbar g_0 \left(c^\dagger \left[\int dk (1 - e^{i2kL}) d_k e^{-i(\omega_k - \omega_0)t} \right] - \text{h.c.} \right)
\]

Integrate Schrödinger equation

\[
|\psi(t)\rangle_I = \mathcal{T} \left\{ \exp \left[-\frac{i}{\hbar} \int_0^t H_I(t')dt' \right] |\psi(0)\rangle_I \right\}
\]

after SVD, yielding an MPS form

\[
|\Psi\rangle = \sum_{i_1 \ldots i_N} A_{i_1}^{[1]} \ldots A_{i_N}^{[N]} |i_1\rangle \ldots |i_N\rangle = \sum_i A_i |i\rangle
\]

Quantum feedback in the nonlinear or many photon regime

Schrödinger equation yields reversible dynamics.
Example: Driven and decaying two-level system.

\[|\psi(n+1)\rangle = \exp \left[-i \Delta t \Omega_L (\sigma^+ + \sigma^-) - \sqrt{\Gamma \Delta t} \sigma_\Delta R^\dagger(n) \right] |\psi(n)\rangle \]
Quantum feedback in the nonlinear or many photon regime

Schrödinger equation yields reversible dynamics. Example: Driven and decaying two-level system.

\[
|\psi(n+1)\rangle = \exp \left[-i\Delta t \Omega_L \left(\sigma^+ + \sigma^- \right) - \sqrt{\Gamma \Delta t} \sigma_- \Delta R^\dagger(n) \right] |\psi(n)\rangle
\]

Time-reversal yields initial state. Full information of the reservoir in state. Numerical exact solution and dissipatively driven-correlation included.

\[
\langle \psi(n-1) | = \langle \psi(n) | \exp \left[i\Delta t \Omega_L \left(\sigma^+ + \sigma^- \right) - \sqrt{\Gamma \Delta t} \sigma_- \Delta R(n) \right]
\]

Pichler, Zoller PRL 116, 93601 (2016)
Lu, AC et al, PRA 63, 63840 (2017)
Selective photon-probability control

Pulsed and decaying two-level system.

Nearly perfect single photon emission for π-pulse
Selective photon-probability control

Pulsed and decaying two-level system.

Nearly perfect single photon emission for π-pulse

Two-photon emission events are favored for 2π-pulses.

Selective photon-probability control

Pulsed and decaying two-level system.

Nearly perfect single photon emission for π-pulse

Two-photon emission events are favored for 2π-pulses.

Droenner, AC et al, PRA 99, 23840 (2019); arXiv:1801.03342v2
• Non-Markovian signatures in Quantum Optics: Wigner delay
• Bypassing non-Markovian decoherence via quantum feedback
• Selective photon-probability control in the two-photon regime
• **Stabilizing a discrete time crystal against dissipation**

with Leon Droenner, and Markus Heyl
Discrete Time Crystal

Illustration of a discrete time-crystal

\[H_F = \Omega \sum_{i=1}^{N} \sigma_i^x \]

\[\langle M \rangle = \frac{1}{N} \sum_{i=1}^{N} (-1)^i \frac{\langle \sigma_i^z \rangle}{2} \]

If driving is perfect \(\varepsilon=0 \), the magnetization shows a single peak in the Fourier spectra. Perfect periodicity.
Discrete Time Crystal

Illustration of a discrete time-crystal

$$\mathcal{H}_F = \Omega \sum_{i=1}^{N} \sigma_i^x$$

$$\langle M \rangle = \frac{1}{N} \sum_{i=1}^{N} (-1)^i \frac{\langle \sigma_i^z \rangle}{2}$$

If driving is perfect $\varepsilon=0$, the magnetization shows a single peak in the Fourier spectra. Perfect periodicity.
Discrete Time Crystal

Illustration of a discrete time-crystal

\[\mathcal{H}_F = \Omega \sum_{i=1}^{N} \sigma_i^x \]

If driving is perfect \(\epsilon=0 \), the magnetization shows a single peak in the Fourier spectra. Perfect periodicity.
Discrete Time Crystal

Illustration of a discrete time-crystal

\[\mathcal{H}_F = (\Omega - \epsilon) \sum_{i=1}^{N} \sigma_i^x \]

The spin chain of N spins returns despite imperfect rotation back to its initial state.

Figure of merit and observable (staggered magnetization):

\[\langle M \rangle = \frac{1}{N} \sum_{i=1}^{N} (-1)^i \frac{\langle \sigma_i^z \rangle}{2} \]

If driving is perfect \(\epsilon = 0 \), the magnetization shows a single peak in the Fourier spectra. Perfect periodicity.
Discrete Time Crystal

Illustration of a discrete time-crystal

\[\mathcal{H}_F = (\Omega - \epsilon) \sum_{i=1}^{N} \sigma_i^x \]

The spin chain of N spins returns despite imperfect rotation back to its initial state.

Figure of merit and observable (staggered magnetization):

\[\langle M \rangle = \frac{1}{N} \sum_{i=1}^{N} (-1)^i \frac{\langle \sigma_i^z \rangle}{2} \]

If driving is imperfect \(\epsilon > 0 \), the magnetization dynamics shows an envelope. Imperfect periodicity.

Discrete Time Crystal

Illustration of a discrete time-crystal

\[\mathcal{H}_F = (\Omega - \epsilon) \sum_{i=1}^{N} \sigma_i^x \]
\[\mathcal{H}_I = \sum_{i=1}^{N-1} J \sigma_i^z \sigma_{i+1}^z \]

The spin chain of \(N\) spins returns despite imperfect rotation back to its initial state.

Figure of merit and observable (staggered magnetization):

\[\langle M \rangle = \frac{1}{N} \sum_{i=1}^{N} (-1)^i \langle \sigma_i^z \rangle \]

If driving is imperfect \(\epsilon > 0\), and interaction switched on, single peak appears but is damped due to thermalization within chain. Vanishing periodicity for large \(N\).
Discrete Time Crystal

Illustration of a discrete time-crystal

\[\mathcal{H}_F = (\Omega - \epsilon) \sum_{i=1}^{N} \sigma_i^x \]

\[\mathcal{H}_I = \sum_{i=1}^{N-1} J \sigma_i^z \sigma_{i+1}^z + \sum_{i=1}^{N} h_i \sigma_i^z \]

The spin chain of N spins returns despite imperfect rotation back to its initial state.

Figure of merit and observable (staggered magnetization):

\[\langle M \rangle = \frac{1}{N} \sum_{i=1}^{N} (-1)^i \frac{\langle \sigma_i^z \rangle}{2} \]

If driving is imperfect \(\epsilon > 0 \), and interaction switched and disorder is present, thermalization is prevented. Periodicity even for large N.
Discrete Time Crystal stabilized against dissipation

Time-crystal in the presence of losses
Lazarides and Moessner, Phys. Rev. B 95, 195135 (2017)

Periodicity is lost when Markovian reservoir (bath) is coupled to the chain. Thermalization within chain is prevented due to many-body localization but thermalization with bath is inevitable.
Discrete Time Crystal stabilized against dissipation

Time-crystal in the presence of losses
Lazarides and Moessner, Phys. Rev. B 95, 195135 (2017)

Periodicity is lost when Markovian reservoir (bath) is coupled to the chain. Thermalization within chain is prevented due to many-body localization but thermalization with bath is inevitable.
Discrete Time Crystal stabilized against dissipation

Time-crystal in the presence of losses
Lazarides and Moessner, Phys. Rev. B 95, 195135 (2017)

But non-Markovian dissipation, such as quantum feedback interaction allows self-stabilizing system-reservoir dynamics and prevents again thermalization.

Droenner, AC et al, arXiv:1902.0498v1
Discrete Time Crystal stabilized against dissipation

Time-crystal in the presence of losses

Lazarides and Moessner, Phys. Rev. B 95, 195135 (2017)

But non-Markovian dissipation, such as quantum feedback interaction allows self-stabilizing system-reservoir dynamics and prevents again thermalization.

Droenner, AC et al, arXiv:1902.0498v1

N=40 spins for different dissipative strengths and imperfect driving
Discrete Time Crystal stabilized against dissipation

Time-crystal in the presence of losses
Lazarides and Moessner, Phys. Rev. B 95, 195135 (2017)

But non-Markovian dissipation, such as quantum feedback interaction allows self-stabilizing system-reservoir dynamics and prevents again thermalization.

Droenner, AC et al, arXiv:1902.0498v1

Even stable against imperfect quantum feedback phase
- Non-Markovian signatures in Quantum Optics: Wigner delay
- Bypassing non-Markovian decoherence via quantum feedback
- Selective photon-probability control in the two-photon regime
- Stabilizing a discrete time crystal against dissipation
• Non-Markovian signatures in Quantum Optics: Wigner delay
• Bypassing non-Markovian decoherence via quantum feedback
• Selective photon-probability control in the two-photon regime
• Stabilizing a discrete time crystal against dissipation
• Non-Markovian signatures in Quantum Optics: Wigner delay
• Bypassing non-Markovian decoherence via quantum feedback
• Selective photon-probability control in the two-photon regime
• Stabilizing a discrete time crystal against dissipation
• Non-Markovian signatures in Quantum Optics: Wigner delay
• Bypassing non-Markovian decoherence via quantum feedback
• Selective photon-probability control in the two-photon regime
• Stabilizing a discrete time crystal against dissipation
Thank you for the attention!