Non-Markovian Quantum Control of solid-state based Qubits

Alexander Carmele, Julia Kabuss, and Andreas Knorr
Nichtlineare Optik und Quantenelektronik
Technische Universität Berlin
I: Semiconductor Quantum Dot

- Semiconductor physics and heterostructures
- Quantum Dot Hamiltonian and equation of motion approach
I: Semiconductor Quantum Dot
 - Semiconductor physics and heterostructures
 - Quantum Dot Hamiltonian and equation of motion approach

II: Laser-driven Quantum Dot
 - Time-resolved phonon-assisted Mollow triplet
 - Proposal for a phonon laser
OUTLINE

I: Semiconductor Quantum Dot
- Semiconductor physics and heterostructures
- Quantum Dot Hamiltonian and equation of motion approach

II: Laser-driven Quantum Dot
- Time-resolved phonon-assisted Mollow triplet
- Proposal for a phonon laser

III: Quantum Dot – cavity QED
- Enhancement of collapse and revival phenomenon
- Photon-loss induced quantum feedback
(i) semiconductor quantum dot

- Semiconductor physics and heterostructures
- Quantum Dot Hamiltonian and equation of motion approach
Semiconductor structures – effective mass approximation

\[\mathcal{H}_0 = -\frac{\hbar^2}{2m_0} \Delta + V_{\text{lat}}(\mathbf{r}) \]

Bandstructure of GaAs:
Parabolic structure of lowest conduction and highest valence band
Semiconductor structures – effective mass approximation

\[\mathcal{H}_0 = -\frac{\hbar^2}{2m_0} \Delta + V_{\text{lat}}(\mathbf{r}) \]

Bandstructure of GaAs:
Parabolic structure of lowest conduction and highest valence band

\[E_n(\mathbf{k}) \approx E_n(0) + \frac{\hbar^2 k^2}{2m^*_n} \quad \text{with} \quad \frac{1}{m^*_n} = \frac{1}{\hbar^2} \frac{\partial^2 E_n(\mathbf{k})}{\partial k^2} \bigg|_{k = 0} \]

Mixing semiconductors with different band gaps: nanostructures
Confinement potential: Geometry, Size, Material specifics

\[
\left[-\frac{\hbar^2}{2m^*_n} \Delta + V_{\text{conf}}(r) \right] \xi_n(r) = \varepsilon_n \xi_n(r) \quad \text{with} \quad \varepsilon_n = E - E_n(0)
\]
Semiconductor Nanostructures and second quantization

Confinement potential: Geometry, Size, Material specifics

\[\left[-\frac{\hbar^2}{2m^*_n} \Delta + V_{\text{conf}}(\mathbf{r}) \right] \xi_n(\mathbf{r}) = \varepsilon_n \xi_n(\mathbf{r}) \quad \text{with} \quad \varepsilon_n = E - E_n(0) \]

\[\varphi_n(\mathbf{r}) = u_{n,k \approx 0}(\mathbf{r}) \xi_n(\mathbf{r}) \]

\[\hat{\Psi}(\mathbf{r}) = \sum_n \varphi_n(\mathbf{r}) \hat{a}_n, \quad \hat{\Psi}^\dagger(\mathbf{r}) = \sum_n \varphi_n^*(\mathbf{r}) \hat{a}_n^\dagger \]
Confinement potential:
Geometry, Size, Material specifics

\[
\left[-\frac{\hbar^2}{2m_n^*} \Delta + V_{\text{conf}}(\mathbf{r}) \right] \xi_n(\mathbf{r}) = \varepsilon_n \xi_n(\mathbf{r}) \quad \text{with} \quad \varepsilon_n = E - E_n(0)
\]

Microscopic calculated Wave function for 2nd quantization

\[
\phi_n(\mathbf{r}) = u_{n,k\approx0}(\mathbf{r}) \xi_n(\mathbf{r}) \quad \hat{\Psi}(\mathbf{r}) = \sum_n \phi_n(\mathbf{r}) \hat{a}_n, \quad \hat{\Psi}^\dagger(\mathbf{r}) = \sum_n \phi_n^*(\mathbf{r}) \hat{a}_n^\dagger
\]

\[
\hat{H}_0^c = \int d^3 r \ \hat{\Psi}^\dagger(\mathbf{r}) \left(-\frac{\hbar^2}{2m_0} \Delta + V_{\text{lat}}(\mathbf{r}) + V_{\text{conf}}(\mathbf{r}) \right) \hat{\Psi}(\mathbf{r})
\]

\[
= \sum_n \varepsilon_n \hat{a}_n^\dagger \hat{a}_n.
\]
Semiconductor quantum dots

Quantum dots: An artificial atom

Discrete energy levels
→ Optical properties by design
→ Electrical pumping possible

Shields, Nat. Photonics, 221 (2007)
Semiconductor quantum dots

Quantum dots: An artificial atom

- Discrete energy levels
- Optical properties by design
- Electrical pumping possible

But:
- Semiconductor environment (wetting layer, phonons) leads to dephasing!
Dephasing mechanism in a semiconductor QD

Pure dephasing:

→ Deformation (LA) potential

\[g_{LA,q}^{\lambda,\mu,3D} = \delta_{\lambda,\mu} \sqrt{\frac{\hbar q}{2 \rho c_s V}} D_{\lambda} \]
Dephasing mechanism in a semiconductor QD

Pure dephasing:

→ Deformation (LA) potential\(^1\)

\[
\gamma_{\lambda,\mu,3D} = \delta_{\lambda,\mu} \sqrt{\frac{\hbar q}{2\rho c_s V}} D_\lambda
\]

1\(^\text{PRB 83, 041304(R) (2011)}\)
Pure dephasing:

→ Fröhlich (LO) potential\(^1\)

\[g_{\text{LO},q}^{\mu,3D} = \frac{1}{q} \sqrt{\frac{e_0^2 \hbar \omega_{\text{LO}}}{2 \varepsilon_0 V}} \left(\frac{1}{\varepsilon_\infty} - \frac{1}{\varepsilon_\text{st}} \right) \]

\(^1\text{PRB 83, 041304(R) (2011)}\)
Dephasing mechanism in a semiconductor QD

Pure dephasing:

→ Fröhlich (LO) potential

\[S_{LO,q}^{\lambda \mu,3D} = \frac{1}{q} \sqrt{\frac{e^2 \hbar \omega_{LO}}{2\varepsilon_0 V}} \left(\frac{1}{\varepsilon_\infty} - \frac{1}{\varepsilon_{st}} \right) \]

\[1^\text{PRB} 83, 041304(R) (2011) \]
GOAL

Developing a theoretical framework to find advantageous features of the semiconductor environment
(i) semiconductor quantum dot

- Semiconductor physics and heterostructures
- Quantum Dot Hamiltonian and equation of motion approach
Semiconductor QD cavity-QED Hamiltonian

\[H = H_{el} + H_{phonon} + H_{photon} + H_{laser} \]

\[H_{el} = \hbar \sum_i \omega_i a_i^\dagger a_i + \hbar \sum_{ijlm} V_{lm}^{ij} a_i^\dagger a_j^\dagger a_l a_m \]

\[H_{phonon} = \hbar \sum_q \omega_q b_q^\dagger b_q + \hbar \sum_{ij,q} g_{ij}^{q} a_i^\dagger a_j b_q^\dagger + H.c. \]

\[H_{photon} = \hbar \sum_k \omega_k c_k^\dagger c_k + \hbar \sum_{ij,k} M_{ij}^{k} a_i^\dagger a_j c_k^\dagger + H.c. \]

\[H_{laser} = \hbar \sum_{ij} \Omega_{ij} a_i^\dagger a_j + H.c. \]
Semiconductor QD cavity-QED Hamiltonian

\[H = H_{el} + H_{phonon} + H_{photon} + H_{laser} \]

\[H_{el} = \hbar \sum_i \omega_i a_i^\dagger a_i + \hbar \sum_{ijlm} V_{lm}^{ij} a_i^\dagger a_j^\dagger a_l a_m \]

\[H_{phonon} = \hbar \sum_q \omega_q b_q^\dagger b_q + \hbar \sum_{i,j,q} g_{q}^{ij} a_i^\dagger a_j b_q^\dagger + H.c. \]

\[H_{photon} = \hbar \sum_k \omega_k c_k^\dagger c_k + \hbar \sum_{i,j,q} M_{q}^{ij} a_i^\dagger a_j c_k^\dagger + H.c. \]

\[H_{laser} = \hbar \sum_{i,j} \Omega_{ij} a_i^\dagger a_j + H.c. \]
for every possible combination of phonon, photon, and electron operators for example a two-level system:

\[
G_{m,n}^{p,s} := a_v^\dagger a_v c^\dagger p c^s b^\dagger m b^n
\]

\[
E_{m,n}^{p,s} := a_c^\dagger a_c c^\dagger p c^s b^\dagger m b^n
\]

\[
T_{m,n}^{p,s} := a_v^\dagger a_c c^\dagger p c^s b^\dagger m b^n
\]
Using product rule for operators:

\[
\partial_t \left(a_c^\dagger a_c c^\dagger c b_q^\dagger b_q \right) = \left(\partial_t a_c^\dagger a_c c^\dagger c \right) b_q^\dagger b_q + c^\dagger c \left(\partial_t a_c^\dagger a_c b_q^\dagger b_q \right)
\]

and generalized commutation relations:

\[
[A, F(B)] = [A, B]F'(B)
\]

for every possible combination of phonon, photon, and electron operators for example a two-level system:
Using product rule for operators:
\[\partial_t \left(a_c^{\dagger} a_c c^\dagger c b_q^{\dagger} b_q \right) = \left(\partial_t a_c^{\dagger} a_c c^\dagger c \right) b_q^{\dagger} b_q + c^\dagger c \left(\partial_t a_c^{\dagger} a_c b_q^{\dagger} b_q \right) \]

and generalized commutation relations:

\[[A, F(B)] = [A, B]F'(B) \]

\[G_{m,n}^{p,s} := a_v^{\dagger} a_v c^\dagger p c^s b^{\dagger} m b^n \]

\[E_{m,n}^{p,s} := a_c^{\dagger} a_c c^\dagger p c^s b^{\dagger} m b^n \]

\[T_{m,n}^{p,s} := a_v^{\dagger} a_c c^\dagger p c^s b^{\dagger} m b^n \]

for every possible combination of phonon, photon, and electron operators for example a two-level system:

and

their dynamics, e.g.

\[\partial_t \langle T_{m,n}^{p,s} \rangle = \]

\[= -i \left[\omega_{cv} - (p - s)\omega_0 - (m - n)\omega_{LO} - i(p + s)\kappa - i\gamma \right] \langle T_{m,n}^{p,s} \rangle \]

\[- i p \left(\langle E_{m,n}^{p-1,s} \rangle - \langle E_{m,n}^{p,s+1} \rangle \right) - i M \left(\langle G_{m,n}^{p,s+1} \rangle - \langle G_{m,n}^{p,s} \rangle \right) - i \Omega(t) \left(\langle E_{m,n}^{p,s} \rangle - \langle G_{m,n}^{p,s} \rangle \right) \]

\[- i \left(\langle T_{m,n+1}^{p,s} \rangle - i \langle T_{m,n+1}^{p,s} \rangle \right) + i m g_v \langle T_{m-1,n}^{p,s} \rangle - i n g_c \langle T_{m,n-1}^{p,s} \rangle, \]
For example, in the case of LO-phonon assisted vacuum Rabi oscillations \(E_{00}^{11} = 0 \):

\[
\begin{align*}
E_{00}^{00} & \rightarrow E_{00}^{11} & \text{Photon interaction:} \\
T_{00}^{10} & \rightarrow T_{00}^{00} & \text{numerically solvable up to arbitrary accuracy,}
\end{align*}
\]

reproducing analytical solutions of the IBM and JCM.
For example, in the case of LO-phonon assisted vacuum Rabi oscillations ($E_{00}^{11} = 0$):

- **Phonon interaction:**
 - $E_{00}^{20} \rightarrow T_{10}^{10} \rightarrow E_{00}^{10} \rightarrow T_{10}^{10} \rightarrow E_{00}^{00}$
 - E_{00}^{01} \rightarrow E_{00}^{02}

- **Photon interaction:**
 - $E_{00}^{00} \rightarrow P_{00}^{11} \rightarrow T_{11}^{10} \rightarrow P_{11}^{10} \rightarrow E_{00}^{00}$
 - E_{00}^{11} \rightarrow E_{00}^{11}

Numerically solvable up to arbitrary accuracy, reproducing analytical solutions of the IBM and JCM.
(ii) Laser-driven quantum dot

- Time-resolved phonon-assisted Mollow triplet
- Proposal for a phonon laser
Strong excitation:

\[|\tilde{c}, n_q\rangle \]

\[|\tilde{v}, n_q\rangle \]

\[\omega_l \]

\[\omega_k \]

(b) strong excitation
Strong excitation:

1. Laser pulse excites the sample.
2. The field $E(t)$ is filtered by $F_s(t)$.
3. The detector reads the output.

(b) Strong excitation:

- Initial state $|\tilde{c}, n_q\rangle$.
- Excitation by laser at ω_l.
- Final state $|\tilde{\psi}, n_q\rangle$.

Energy and time spectroscopy:

1PRB 84, 075314 (2011)
Phonon coupling strength via anti-crossing

- Spectrum shows the usual Mollow triplet and phonon-assisted Mollow triplets.
- Additional anticrossings, when the Rabi-energy matches the phonon energy (Here 36.4 meV for InGaAs/GaAs-QD).
- These anti-crossings scale with the electron-phonon coupling strength.
(ii) Laser-driven quantum dot

- Time-resolved phonon-assisted Mollow triplet
- Proposal for a phonon laser
Proposal for a phonon laser

Non-resonant excited 2-level system in an acoustic cavity
Proposal for a phonon laser

Non-resonant excited 2-level system in an acoustic cavity

High orders of phonon operators become important 1,2,3

1PRL 104, 156801 (2010), 2PSS(b) 248, 872 (2011), 3submitted (2012)
Generation of coherent phonons

\[g_{ph}^{(2)}(0) \]

\[n \]

[Graph showing the generation of coherent phonons as a function of \(\Omega [\text{meV}] \).]
Generation of coherent phonons

\(g_{ph}^{(2)}(0) \), phonon number

\(n \)

\(\Omega [\text{meV}] \)

Below is the image of one page of a document, as well as some raw textual content that was previously extracted for it. Just return the plain text representation of this document as if you were reading it naturally. Do not hallucinate.
(iii) quantum dot cavity-QED

- Enhancement of collapse and revival phenomenon
- Photon-loss and induced quantum feedback
LA-phonon assisted collapse and revival

Coherent state: cavity field prepared initially in Glauber states
LA-phonon assisted collapse and revival

Coherent state: cavity field prepared initially in Glauber states

Markovian theory
LA-phonon assisted collapse and revival

Coherent state: cavity field prepared initially in Glauber states

Non-Markovian theory

Collapse and revival phenomenon is enhanced due to LA-phonon induced dephasing\(^1\)

\(^1\) submitted (2012)
(iii) quantum dot cavity-QED

- Enhancement of collapse and revival phenomenon
- Photon-loss and induced quantum feedback
Photon-loss induced quantum feedback

Set-up for quantum feedback

External mirror shapes the mode continuum in front of the mirror to introduce a delay effect1

\[H = \sum_{q} (G_q c^\dagger d_q + G^*_q d^\dagger_q c) \]

1 in preparation (2012)
Photon-loss induced quantum feedback

\[G_q = 0 \]

Jaynes-Cummings model solution, if no outcoupling is present
Photon-loss induced quantum feedback

$G_q = G_0 \neq 0$

$G_0 \gg M$

Weak coupling solution, if outcoupling is present and stronger than light coupling
Photon-loss induced quantum feedback

\[G_q = G_0 \sin (qL) \]
Photon-loss induced quantum feedback

External mirror shapes the mode continuum in front of the mirror to introduce a delay effect\(^1\)

\(^1\) in preparation (2012)
Alexander Carmele: Non-Markovian Quantum Control of solid-state Qubits

Graduate Lecture SS 2012

Photon-loss induced quantum feedback

Classical limit\(^1\):

\[\langle a^\dagger_c a_c c^\dagger c \rangle \approx \langle a^\dagger_c a_c \rangle \langle c^\dagger c \rangle \]

\(^1\) in preparation (2012)
(iv) conclusion
Conclusion

I: Semiconductor Quantum Dot
- Semiconductor physics and heterostructures
- Quantum Dot Hamiltonian and equation of motion approach

II: Laser-driven Quantum Dot
- Time-resolved phonon-assisted Mollow triplet
- Proposal for a phonon laser

III: Quantum Dot – cavity QED
- Enhancement of collapse and revival phenomenon
- Photon-loss induced quantum feedback
Thank you for your attention !!