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We propose a concept to generate and stabilize diverse partial synchronization patterns (phase clusters)
in adaptive networks which are widespread in neuroscience and social sciences, as well as biology,
engineering, and other disciplines. We show by theoretical analysis and computer simulations that
multiplexing in a multilayer network with symmetry can induce various stable phase cluster states in a
situation where they are not stable or do not even exist in the single layer. Further, we develop a method for
the analysis of Laplacian matrices of multiplex networks which allows for insight into the spectral structure
of these networks enabling a reduction to the stability problem of single layers. We employ the multiplex
decomposition to provide analytic results for the stability of the multilayer patterns. As local dynamics
we use the paradigmatic Kuramoto phase oscillator, which is a simple generic model and has been
successfully applied in the modeling of synchronization phenomena in a wide range of natural and
technological systems.

DOI: 10.1103/PhysRevLett.124.088301

Complex networks are a ubiquitous paradigm in nature
and technology, with a wide field of applications ranging
from physics, chemistry, biology, and neuroscience, to
engineering and socioeconomic systems. Of particular
interest are adaptive networks, where the connectivity
changes in time, for instance, the synaptic connections
between neurons are adapted depending on the relative
timing of neuronal spiking [1–5]. Similarly, chemical
systems have been reported [6], where the reaction rates
adapt dynamically depending on the variables of the
system. Activity-dependent plasticity is also common in
epidemics [7] and in biological or social systems [8].
Synchronization is an important feature of the dynamics in
networks of coupled nonlinear oscillators [9–13]. Various
synchronization patterns are known, like cluster synchro-
nization where the network splits into groups of synchro-
nous elements [14], or partial synchronization patterns like
chimera states where the system splits into coexisting
domains of coherent (synchronized) and incoherent
(desynchronized) states [15–17]. These patterns were also
explored in adaptive networks [18–33]. Furthermore,
adapting the network topology has also successfully been
used to control cluster synchronization in delay-coupled
networks [34].
Another focus of recent research in network science are

multilayer networks, which are systems interconnected
through different types of links [35–38]. Prominent exam-
ples are social networks which can be described as groups
of people with different patterns of contacts or interactions
between them [39–41]. Other applications are communi-
cation, supply, and transportation networks, for instance
power grids, subway networks, or air traffic networks [42].

In neuroscience, multilayer networks represent, for in-
stance, neurons in different areas of the brain, neurons
connected either by a chemical link or by an electrical
synapsis, or the modular connectivity structure of brain
regions [43–51]. Special cases of multilayer networks
are multiplex topologies, where each layer contains
the same set of nodes, and only pairwise connections
between corresponding nodes from neighboring layers
exist [52–71].
In spite of the lively interest in the topic of adaptive

networks, little is known about the interplay of adaptively
coupled groups of networks [25,72,73]. Such adaptive
multilayer or multiplex networks appear naturally in neuro-
nal networks, e.g., in interacting neuron populations with
plastic synapses but different plasticity rules within each
population [74,75], or affected by different mechanisms of
plasticity [76], or the transport of metabolic resources [77].
Beyond brain networks, coexisting forms of (meta)plastic-
ity are investigated in neuro-inspired devices to develop
artificially intelligent learning circuitry [78].
In this Letter we show that a plethora of novel patterns

can be generated by multiplexing adaptive networks. In
particular, partial synchronization patterns like phase clus-
ters and more complex cluster states which are unstable in
the corresponding monoplex network can be stabilized, or
even states which do not exist in the single-layer case for
the parameters chosen, can be born by multiplexing. Thus
our aim is to provide fundamental insight into the combined
action of adaptivity and multiplex topologies. Hereby
we elucidate the delicate balance of adaptation and multi-
plexing which is a feature of many real-world networks
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even beyond neuroscience [79–82]. As local dynamics we
use the paradigmatic Kuramoto phase oscillator model,
which is a simple generic model and has been successfully
applied in the modeling of synchronization phenomena in a
wide range of natural and technological systems [13].
A general multiplex network with L layers each con-

sisting ofN identical adaptively coupled phase oscillators is
described by

_ϕμ
i ¼ ω −

1

N

XN
j¼1

κμij sinðϕμ
i − ϕμ

j þ αμμÞ

−
XL

ν¼1;ν≠μ
σμν sinðϕμ

i − ϕν
i þ αμνÞ;

_κμij ¼ −ϵ½κμij þ sinðϕμ
i − ϕμ

j þ βμÞ�; ð1Þ
where ϕμ

i ∈ ½0; 2πÞ represents the phase of the ith oscillator
(i ¼ 1;…; N) in the μth layer (μ ¼ 1;…; L), and ω is the
natural frequency. The interaction between the oscillators
within each layer is determined adaptively by the intralayer
coupling weights κμij ∈ ½−1; 1�, whereas between the layers
the interlayer coupling weights σμν ≥ 0 are fixed. The
parameters αμν are the phase lags of the interaction [83].
The adaptation rate 0 < ϵ ≪ 1 separates the time scales of
the slow dynamics of the coupling weights and the fast
dynamics of the oscillatory system. The phase lag param-
eter βμ of the adaptation function sinðϕμ

i − ϕμ
j þ βμÞ, also

called plasticity rule in the neuroscience terminology [18],
describes different rules that may occur in neuronal
networks. For instance, for βμ ¼ �ðþÞπ=2, an (anti-)
Hebbian-like rule [84–86] is obtained where the coupling
κij increases (decreases) between any two systems with
close-by phases [87]. If β ¼ 0, the link κij will be
strengthened if the ith oscillator advances the jth. Such
a relationship is typical for spike-timing dependent plas-
ticity in neuroscience [3,5,88,89].
Let us note important properties of our model Eq. (1),

which has been widely used as a paradigmatic model for

adaptive networks [18–30] and generalizes the Kuramoto-
Sakaguchi model with fixed coupling topology [90–94].
First, ω can be set to zero without loss of generality
due to the shift symmetry of Eq. (1), i.e., considering the
corotating frame ϕ → ϕþ ωt. Moreover, due to the exist-
ence of the attracting region G≡ fðϕμ

i ; κ
μ
ijÞ∶ϕμ

i ∈ ð0; 2π�;
jκμijj ≤ 1; i; j ¼ 1;…; N; μ ¼ 1;…; Lg, one can restrict the
range of the coupling weights to the interval −1 ≤ κij ≤ 1

[23]. Finally, based on the parameter symmetries of the
model

ðα; β;ϕ; κÞ ↦ ð−α; π − β;−ϕ; κÞ;
ðαμμ; βμ;ϕμ

i ; κ
μ
ijÞ ↦ ðαμμ þ π; βμ þ π;ϕμ

i ;−κ
μ
ijÞ;

where α, β, ϕ, κ abbreviate the whole set of variables and
parameters, it is sufficient to analyze the system within
the parameter region α11 ∈ ½0; π=2Þ, αμμ ∈ ½0; πÞ ðμ ≠ 1Þ,
αμν ∈ ½0; 2πÞ ðμ ≠ νÞ, and βμ ∈ ½−π; πÞ.
Before we consider multiple layers, we suggest that each

solution of Eq. (1) for L ¼ 1, 2 is called a monoplex or
duplex state, respectively. Already for a single layer, Eq. (1)
possesses a huge variety of dynamical (monoplex) states
such as multiclusters with respect to frequency synchro-
nization, chaotic attractors, and chimeralike states, which
have been studied numerically and analytically [18–23].
In particular, it has been shown that starting from
uniformly distributed random initial condition ϕi ∈ ½0; 2πÞ,
κij ∈ ½−1; 1�, the system can reach different frequency
multicluster states with hierarchical structure depending
on the parameters α and β. The frequency multiclusters in
turn consist of several single clusters which determine the
existence and stability of the former [24]. Therefore, these
one-cluster states (with identical frequency, but different
phase distributions) constitute the building blocks of
adaptively coupled phase oscillators, and their generaliza-
tion to the multiplex case will be in the focus of this Letter.
The reason for this focus is that one-cluster states, which
are analytically very well understood, are building blocks
for more complex dynamical states. Chimeralike states as
they were studied in Refs. [23,25] exist close to the borders
of these states, so the existence and stability of one-clusters
may pave the way for observing those hybrid patterns.
In general, one-cluster states are given by equilibria

relative to a corotating frame [22]

ϕμ
i ¼ Ωtþ aμi ;

κμij ¼ − sinðaμi − aμj þ βμÞ; ð2Þ

with collective frequency Ω and relative phases aμi .

Hence the second moment order parameter R2ðaμÞ ¼
ð1=NÞjPN

j¼1 e
i2aμj j with aμ ≡ ðaμ1;…; aμNÞT can be used

as a characteristic measure. In the case of monoplex
systems (L ¼ 1), three types of solutions exist

(a) (b) (c)

FIG. 1. Illustration of the three types of monoplex one-cluster
states of Eq. (2) (L ¼ 1) for an ensemble of 10 oscillators (green
circles) with frequencies Ω (upper panels) and coupling structure
with weights κij (lower panels): One-cluster state (a) of splay type
[R2ðaÞ ¼ 0], (b) of antipodal type [R2ðaÞ ¼ 1], and (c) of double
antipodal type with Q ¼ 7. Parameters: α ¼ 0.1π, β ¼ 0.1π.
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(see Fig. 1) which are characterized by corresponding
frequencies Ω as a function of ðα11; β1Þ [22]: (a) Ω¼
cosðα11−β1Þ=2 if R2ða1Þ¼0 (Splay state), (b) Ω ¼
sin α11 sin β1 if R2ða1Þ ¼ 1 with a1i ∈ f0; πg (Antipodal
state), (c) Ω ¼ cosðα11 − β1Þ=2 − R2ðaÞ cosðψQÞ=2 if 0 <
R2ða1Þ < 1 with a1i ∈ f0; π;ψQ;ψQ þ πg (Double antipo-
dal state) with ψQ being the unique solution (modulo 2π) of

ð1 − qÞ sinðψQ − α11 − β1Þ ¼ q sinðψQ þ α11 þ β1Þ; ð3Þ

where q ¼ Q=N and Q ∈ f1;…; N − 1g denotes the num-
ber of relative phases a1i ∈ f0; πg. Here, splay states are
defined in a more general sense by R2ða1Þ ¼ 0, which
includes the states a1i ¼ 2πi=N usually referred to as the
splay state [95].
Let us now consider these one-cluster states in multiplex

structures. Therefore, we introduce the notion of lifted one-
cluster states, where in each layer the state (ϕμ

i ðtÞ; κμijðtÞ) is
a monoplex one-cluster, i.e., the phases aμi of the oscillators
are of splay, antipodal, or double antipodal type which
solves Eq. (3). It can be shown [96] that in duplex systems
(L ¼ 2) the phase difference of oscillators between the
layers Δa≡ a1i − a2i takes only two values and solves

ΔΩ¼ σ12 sinðΔaþα12Þþσ21 sinðΔa−α21Þ, where ΔΩ≡
Ωðα11; β1Þ −Ωðα22; β2Þ is given above for the three differ-
ent one-cluster states (splay, antipodal, double antipodal).
Figure 2 displays lifted states of splay (a), antipodal (b), and
splay type (d). The phase distributions in both layers are the
same but shifted by the constant value Δa in agreement
with the above equation. In contrast to the lifted states,
Fig. 2(c) shows another possible one-cluster for the duplex
network. Because of the interaction of the two layers we
can find a phase distribution which is of double antipodal
type in each layer but not a lifted state since neither ψ1 nor
ψ2 solve Eq. (3) for Q ¼ 30. This means that these states
are born by the duplex setup. Moreover, in contrast to the
other examples the phase distribution between the layers
does not agree, ψ1 ≠ ψ2. For the monoplex case, it has been
shown that double antipodal states are unstable for any set
of parameters [24]. Hence, finding stable double antipodal
states which interact through the duplex structure is
unexpected.
For more insight into the birth of phase-locked states by

multiplexing, Fig. 3 displays the emergence of double
antipodal states in a parameter regime where they do not
exist in single-layer networks. They are characterized by
the second moment order parameter R2. It is remarkable
that the new double antipodal state can be found for a wide
range of the interlayer coupling strength larger than a
certain critical value σc, and is clearly different from those
of the monoplex. Moreover, these states are even robust for
inhomogeneous natural frequencies [96]. Below the critical
value σc, the double antipodal states are no longer stable,
and more complex temporal dynamics occurs which causes

(a) (b)

(c) (d)

FIG. 2. Different duplex states of Eq. (2) (L ¼ 2) for an
ensemble of 50 oscillators in each layer with color-coded
coupling weights κμij (upper panels, color code as in Fig. 1),
phases ϕμ

j (lower panels): Duplex one-cluster states (a) of lifted

splay type [R2ðaμÞ ¼ 0] for α12=21 ¼ 0.3π, σ12=21 ¼ 0.07; (b) of
lifted antipodal type [R2ðaμÞ ¼ 1] for α12 ¼ 0.3π, α21 ¼ 0.75π,
σ12=21 ¼ 0.62; (c) of double antidodal type (not a lifted state) for
α12=21 ¼ 0.05π, σ12=21 ¼ 0.28; (d) of lifted splay type for
α12 ¼ 0.3π, α21 ¼ 0.4π, σ12=21 ¼ 0.8, and ϵ ¼ 0.01. In the lower
panels phase differences between the two layers are indicated by
Δa≡ a1i − a2i , and between the two new antipodal states (c) by
ψ1, ψ2.

FIG. 3. Birth of double antipodal state in a duplex network
(N ¼ 12) for a wide range of interlayer coupling strength
σ ¼ σ12 ¼ σ21. The solid lines are the temporal averages for
the second moment order parameter R2 of the individual layers
(layer 1: black, layer 2: red). The error bars for σ < σc denote the
standard deviation of the temporal evolution of R2. The dashed
horizontal lines represent the unique values of R2 for the double
antipodal state in a monoplex network. The plot was obtained by
adiabatic continuation of a duplex double antipodal state (see
inset) in both directions starting from σ ¼ 0.5. Parameters:
α11=22 ¼ 0.3π, α12=21 ¼ 0.05, β1 ¼ 0.1π, β2 ¼ −0.95π, and
ϵ ¼ 0.01.
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temporal changes in R2. This leads to nonvanishing
temporal variance indicated by the error bars in Fig. 3.
In the following we show how the dynamics in a

neighborhood of theses states can be lifted as well, i.e.,
we investigate their local stability. The linearization of
Eq. (1) around the one-cluster states described by Eq. (2) is
exemplified for antipodal states but can be generalized to
the other states as well:

_δϕμ
i ¼

1

N

XN
j¼1

½sinðΔaþβμÞcosðΔaþαμμÞΔμμ
ij δϕ

− sinðΔaþαμμÞδκμij�−
XM
ν¼1

σμν cosðΔaþαμνÞΔμν
ij δϕ;

_δκμij¼−ϵ½δκμijþ cosðΔaþβμÞΔμμ
ij δϕ� ð4Þ

where Δμν
ij δϕ≡ δϕμ

i − δϕν
j .

In duplex networks, the coupling structure is given by a
2 × 2 block matrix M with the N × N unity matrix IN :

M ¼
�

A m · IN
n · IN B

�
: ð5Þ

If A and B are diagonalizable N × N matrices which
commute (m, n ∈ R, n ≠ 0), the following relation for
the characteristic polynomial of the eigenvalues λ can be
proven [96] using Schur’s decomposition [99,100]:

λ2 − ½ðdAÞi þ ðdBÞi�λþ ðdAÞiðdBÞi −mn ¼ 0 ð6Þ

where ðdAÞi and ðdBÞi are the diagonal elements of the
corresponding diagonal matrices of A and B, respectively.
Note that Eq. (6) not only simplifies the calculation for the
eigenvalues in the case of a duplex structure, moreover, it is
a general result on linear dynamical systems on duplex
networks. Therefore, this result is important for the inves-
tigation of stability and symmetry in multiplex networks.
In the case of a duplex antipodal one-cluster state Eq. (1)

with a1i ∈ f0; πg and a2i ¼ a1i − Δa, the Jacobian in Eq. (4)
can bebrought to the formEq. (5) andpossesses the following
set of eigenvalues: S ¼ f−ϵ; ðλi;1; λi;2; λi;3; λi;4Þi¼1;…;Ng
where λi;1;…;4 are the solutions of polynomials containing
the eigenvalues of the monoplex system [96].
Thus, the stability analysis of the duplex system is

reduced to that of the monoplex case.We are able to analyze
the stabilizing and destabilizing features of a duplex network
numerically and analytically. To illustrate the effect of
multiplexing, the interaction between two clusters of antipo-
dal type is presented in Fig. 4. The stability of these states is
determined by integratingEq. (1) numerically startingwith a
slightly perturbed lifted antipodal state. The states are stable
if the numerical trajectory is approaching the lifted antipodal
state. Otherwise, the state is considered as unstable. The
black contour lines in Fig. 4 show the borders of the stability

regions in dependence of the coupling strength σ21, as
calculated from the Lyapunov exponents. The borders are in
remarkable agreement with the numerical results.
In Fig. 4, the parameters for the first layer α11, β1 are

chosen such that the antipodal state is stable without
interlayer coupling. The stability of the duplex antipodal
states is displayed in the ðα22; β2Þ parameter plane for
several values of the interlayer coupling σ21 (the stability
regions for smaller values of σ21 are always contained in
regions of larger ones). To compare the effects of the duplex
network with the monolayer case, the stability regions for
monoplex antipodal states are displayed as red hatched areas.
They are markedly different. In Fig. 4(a), the two layers are
connected unidirectionally (σ12 ¼ 0). It can be seen that with
increasing interlayer coupling weight σ21 the region of
stability for the lifted antipodal state also grows. Already
for small values of the interlayer couplings σ21, a stabilizing
effect of the duplex network can be noticed. For σ ¼ 0.1
there exist already regions for which the duplex antipodal
state is stable but the corresponding monoplex state would
not be stable. The opposite effect is found as well where the
duplex network destabilizes a lifted state. Figure 4(b) shows
the results for two layers with bidirectional coupling. Here,
the duplex structure can have stabilizing and destabilizing
effects. Further, for the bidirectional coupling we also notice
a growth of the stability region with increasing σ21 similar to
the unidirectional case. However, the regions of stability
grow at different rates in dependence on σ21 and non-
monotonically with respect to the parameters α22, β2.
Comparing the size of the stability region for both cases,
one can see that for small values of σ21 the region for
bidirectional coupling is larger. In turn, for higher interlayer
coupling, the regions for the unidirectional case are larger.
In conclusion, we have proposed a concept to induce

diverse partial synchronization patterns (phase clusters) in

(a) (b)

FIG. 4. Regions of stability (blue) and instability (white) of the
lifted antipodal state in the ðα22; β2Þ parameter plane for different
values of interlayer coupling (indicated by different blue shading)
σ21, where regions of stronger coupling σ21 (lighter blue) include
such of weaker σ21 (darker blue). Stability regions for single-
layer antipodal clusters are indicated by red hatched areas. The
interlayer coupling is considered as (a) unidirectional (σ12 ¼ 0)
and (b) bidirectional (σ12 ¼ σ21). Parameters: α11 ¼ 0.2π,
β1 ¼ −0.8π, α12 ¼ 0, α21 ¼ 0.3π, and ϵ ¼ 0.01.
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adaptively coupled phase oscillator networks. While adap-
tive networks have recently attracted a lot of attention in the
fields of neuroscience and social science, biology, engi-
neering, and other disciplines, and multilayer networks are
a paradigm for real-world complex networks, little has been
known about the interplay of multilayer structures and
adaptivity. We have aimed to fill this gap within a rigorous
framework of theoretical analysis and computer simula-
tions. We have shown that multiplexing in a multilayer with
symmetry can induce various stable phase cluster states like
splay states, antipodal states, and double antipodal states, in
a situation where they are not stable or do not even exist in
the single layer. Further, we have developed a novel method
for analysis of Laplacian matrices of duplex networks
which allows for insight into the spectral structure of these
networks, and can easily be generalized to more than two
layers [96]. This new approach of multiplex decomposition
has a broad range of applications to physical, biological,
socioeconomic, and technological systems, ranging from
plasticity in neurodynamics or the dynamics of linear
diffusive systems [101,102] to generalizations of the master
stability approach [103,104] for adaptive networks [96].
We have used the multiplex decomposition to provide
analytic results for the stability of lifted states in the
multilayer system. As local dynamics we have used the
paradigmatic Kuramoto phase oscillator model, supple-
mented by adaptivity of the link strengths with a phase lag
parameter which can model a whole range of adaptivity
rules from Hebbian via spike-timing dependent plasticity to
anti-Hebbian.
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