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Abstract

We consider noise-induced charge density dynamics in a semiconductor superlattice.

The parameters are fixed in the regime below the Hopf bifurcation that gives birth

to spatio-temporal oscillations, where in the absence of noise the system rests in a

fixed point. It is shown that in this case noise can induce in the superlattice quite

coherent oscillations of the current through the device. While the regularity of these

oscillations depends on the noise intensity, their dominant frequency remains almost

constant with variation of the noise level in the system. Further, we demonstrate

that a time-delayed feedback scheme that was previously used to control purely

temporal oscillations induced by noise, can not only enhance or deteriorate the

regularity of stochastic spatio-temporal patterns but also allows for the manipulation

of the system’s time scales with varying time delay.

PACS numbers: 05.45.-a, 05.40.-a, 72.70.+m
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1. INTRODUCTION

Semiconductor nanostructures represent prominent examples of nonlinear dynamic sys-

tems which exhibit a variety of complex spatio-temporal patterns [Schöll, 2001]. A super-

lattice is such a nanostructure, which consists of alternating layers of two semiconductor

materials with different band gaps. This leads to (periodic) spatial modulations of the con-

duction and valence band of the material, and thus forms an energy band scheme consisting

of a periodic sequence of potential barriers and quantum wells (see Fig. 1(a)). Those struc-

tures can be taylored by modern epitaxial growth technologies with high precision on a

nanometer scale. If the potential barriers are sufficiently thick, the electrons are localized

in the individual quantum wells. In such a situation the superlattice can be treated as a

series of weakly coupled quantum wells, and sequential resonant tunneling of electrons be-

tween different wells leads to strongly nonlinear charge transport phenomena, if a dc voltage

is applied across the superlattice [Bonilla, 2002; Schöll, 2005; Wacker, 2002]. For instance,

negative differential conductance can appear [Esaki & Tsu, 1970] (see Fig.1(b)). Thus, semi-

conductor superlattices can be used as generators of current oscillations, whose frequency

depends on the parameters of the superlattice structure and the applied voltage, and thus,

can be varied in a wide range from some hundred kHz [Cadiou et al., 1994; Hofbeck et al.,

1996; Kastrup et al., 1995; Wang et al., 2000] to hundreds of GHz [Schomburg et al., 1999],

which makes this system very promising for practical applications. On the other hand, the

inherent nonlinearity gives rise to complex spatio-temporal dynamics of the charge density

and the field distribution within the device, including the formation of travelling charge

accumulation and depletion fronts and field domains associated with current oscillations.

Even chaotic scenarios have been found experimentally [Luo et al., 1998; Zhang et al., 1996]

and described theoretically in periodically driven [Bulashenko & Bonilla, 1995] as well as

in undriven superlattices [Amann et al., 2002]. The interaction between multiple moving

fronts may lead to sophisticated self-organized patterns, which are typical of a large variety

of spatially extended systems [Amann et al., 2003; Kapral & Showalter, 1995; Scott, 2004].

It is well known that microscopic random fluctuations essentially affect the transport

mechanisms in semiconductor nanostructures [Blanter & Büttiker, 2000; Kießlich et al.,

2003; Song et al., 2003; Zhao & Hone, 2000]. They usually smear out and deteriorate the

regularity in charge transport. However, nowadays for a large class of extended systems of
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reaction–diffusion type it has been shown that noise can play a constructive role inducing

quite coherent dynamical space-time patterns [Garćıa-Ojalvo et al., 1993]. Recently, such

noise-induced patterns were also found in semiconductor nanostructures described by a

reaction-diffusion model for the current density distribution [Stegemann et al., 2005]. Thus,

the open question to what extent the noise-induced ordering occurs generally in different

classes of nanostructures, becomes of central importance. Another essential issue in all those

systems is the question how one can deliberately influence and control the regularity of such

noise-induced dynamics.

It was recently shown for two general classes of simple nonlinear systems with temporal

degrees of freedom only, that the coherence properties and the time scales of noise-induced

oscillations can be changed by applying a time-delayed feedback [Balanov et al., 2004; Janson

et al., 2004; Schöll et al., 2005] in the form which was introduced earlier by Pyragas [Pyragas,

1992] for chaos control of deterministic dynamics. In that previous work purely temporal

noise-induced dynamics was considered within the example of a Van-der-Pol oscillator, i.e.

a system close to but below a Hopf bifurcation, and a FitzHugh-Nagumo-model, i.e. an

excitable system.

(a) (b)

FIG. 1 (a) Superlattice energy band structure of alternating GaAs and AlAs layers under bias.

(b) Current density vs electric field characteristic at the emitter barrier (straight line) and between

two neutral wells exhibiting negative differential conductivity.

In the present paper we consider a semiconductor superlattice, i.e. a spatially extended

system which in some range of parameters displays complicated front dynamics. It ex-

hibits spatio-temporal patterns markedly distinct from those of a reaction-diffusion system
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[Stegemann et al., 2005]. We study the effects of noise in the superlattice for parameters

fixed below the Hopf bifurcation giving birth to spatio-temporal front oscillations, where

there are no self-oscillations in the deterministic system, and the only fixed point is a sta-

tionary charge depletion front. We show that in this case within a certain range of noise

intensities highly coherent behaviour of the electron density dynamics arises, resulting in

oscillations of the current, whose power spectrum shows very pronounced peaks. We also

demonstrate that global feedback in the form of the difference between the current through

the device at time t and the current at a delayed time t − τ can be used for the effective

control of essential features of such noise-induced oscillations like time scales and coher-

ence. This complements previous work on time-delayed feedback control of deterministic

chaos in superlattices [Schlesner et al., 2003] and in other spatially extended semiconductor

nanostructures modelled by reaction-diffusion systems [Baba et al., 2002; Beck et al., 2002;

Franceschini et al., 1999; Schöll, 2004; Unkelbach et al., 2003].

The paper has the following structure. After the Introduction, in Sec. II we describe our

stochastic model of a semiconductor superlattice. In Sec. III noise-induced patterns in the

system are discussed, and quantities characterizing such kind of dynamics are introduced. A

time-delayed feedback scheme for control of noise-induced dynamics is proposed in Sec. IV,

and in Sec V we discuss the obtained results and possible applications.

2. MODEL EQUATIONS.

Our model of a superlattice is based on sequential tunneling of electrons [Wacker, 2002].

The resulting tunneling current density Jm→m+1(Fm, nm, nm+1) from well m to well m + 1

depends only on the electric field Fm between both wells and the electron densities nm and

nm+1 in the respective wells (in units of cm−2). For details of the microscopic calculation of

Jm→m+1 we refer to the literature [Amann et al., 2001; Wacker, 2002]. A typical dependence

of Jm→m+1 on the electric field between two consecutive wells is N -shaped and exhibits a

pronounced regime of negative differential conductivity, as shown in Fig.1(b).

In the following we will adopt the densities of electrons in each well as the dynamic

variables of the system. The dynamic equations are then given by the continuity equation

e
dnm

dt
= Jm−1→m − Jm→m+1 for m = 1, . . . N (1)
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where N is the number of wells in the superlattice.

The electron densities and the electric fields are coupled by the following discrete version

of Gauss’s law

εrε0(Fm − Fm−1) = e(nm −ND) for m = 1, . . .N, (2)

where εr and ε0 are the relative and absolute permittivities, e < 0 is the electron charge,

ND is the donor density, and F0 and FN are the fields at the emitter and collector barrier,

respectively.

The applied voltage between emitter and collector gives rise to a global constraint

U = −

N∑
m=0

Fmd, (3)

where d is the superlattice period.

The current densities at the contacts are crucial for the generation of front patterns

injected from the emitter. For our purpose it is sufficient to choose Ohmic boundary condi-

tions:

J0→1 = σF0 (4)

JN→N+1 = σFN
nN

ND
(5)

where σ is the Ohmic contact conductivity, and the factor nN/ND is introduced in order to

avoid negative electron densities at the collector.

Now we extend the deterministic model to incorporate stochastic influences. The dom-

inant noise source, which effects the electron dynamics in semiconductor nanostructures,

is shot noise, which is associated with the fluctuations of the times between tunneling of

electrons across a potential barrier (see e.g. [Pouyet & Brown, 2003] for a theoretical descrip-

tion). In the case of a weakly coupled superlattice, the random component of the well-to-well

current can be described in a first approximation by Poissonian statistics [Blanter & Büttiker,

2000]. Those fluctuations affect the current densities Jm→m+1. Assuming that the tunneling

times are much smaller than any characteristic time scale of the global current through the

device J = 1

N+1

∑
m Jm→m+1, and taking into account that each current density Jm→m+1

is influenced by many Poissonian events we can roughly approximate those fluctuations by

Gaussian white noise sources in the continuity equations for the electron densities. Charge

conservation is automatically guaranteed by adding a noise term ξm to each current density
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Jm−1→m:

e
dnm

dt
= Jm−1→m +Dξm(t) − Jm→m+1 −Dξm+1(t), (6)

where ξm(t) is Gaussian white noise with

〈ξm(t)〉 = 0, (7)

〈ξm(t)ξm′(t′)〉 = δ(t− t′)δmm′ , (8)

and D is the noise intensity. Since we assume that the inter-well coupling in our superlattice

is very weak, these noise sources can be treated as independent.

3. NOISE-INDUCED SPACE-TIME PATTERNS

We now fix the parameters of the system slightly below a Hopf bifurcation, where without

noise (D = 0) the only stationary solution is a stable fixed point that corresponds to a

stationary depletion front localized over a small range of wells near the emitter (Fig.2(a)).

This is done by choosing a very small σ which pins a high field domain at the emitter region

and suppresses the generation of accumulation fronts at the emitter. Note that for the

considered superlattice a free depletion front under fixed current conditions would always

have a positive velocity [Amann et al., 2002]. The observed stationarity of the depletion

front is therefore a consequence of the global coupling (3) and the suppression of new fronts

at the emitter.

As the noise intensity increases (D > 0), the current density starts to oscillate in a quite

regular manner around the steady state (middle panel of Fig. 2(b)). From the corresponding

charge density plot (upper panel of Fig. 2(b), see inset) we can associate this oscillation with

a periodic motion of the depletion front as a whole. This is the expected behavior close to

a Hopf bifurcation. At even larger noise intensities, however, the nature of the observed

dynamics changes dramatically (Fig. 2(c)). Now the current oscillations are no longer har-

monic around the stationary value, but become sharply peaked and spiky, and the average

current is shifted towards larger values. This is reflected in a more asymmetric motion of

the depletion front (upper panel of Fig. 2(c), see inset). In particular we now occasionally

observe the onset of a tripole oscillation, where in addition to the existing depletion front,

a dipole of an accumulation and a depletion front is generated close to the emitter, and the
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leading (but not fully developed) accumulation front catches up and annihilates with the

already present depletion front, while the trailing depletion front remains.

(a) (b) (c)

FIG. 2 Dynamical behavior of the superlattice for different noise intensities (a) D = 0 (b) D =

0.1As1/2/mm2 and (c) D = 0.5As1/2/mm2 for fixed σ = 0.266Ω−1m−1 and U = 1V (Other

parameters as in [Schlesner et al., 2003]). The upper panel shows space-time plots of the electron

density (black color indicates electron depletion, light color electron accumulation; the emitter is at

the bottom. The insets depict a blow-up of the depletion front). The middle panel shows the total

current density vs. time. The lower panels display the corresponding phase portraits of electron

densities n18 vs. n19 in two wells close to the emitter.

To quantify the regularity of oscillations we introduce the correlation time tcor given by

the formula [Stratonovich, 1963] :

tcor =
1

ψ(0)

∫
∞

0

|ψ(s)|ds, (9)

where ψ(s) is the autocorrelation function of the current density signal J(t),

ψ(s) = 〈(J(t) − 〈J〉)(J(t− s) − 〈J〉)〉, (10)

and ψ(0) is its variance. Note that in (10) we apply an ensemble average.

A typical numerical estimate of the autocorrelation function for the noise–induced oscil-

lations of our superlattice is shown in Fig. 3. Qualitatively we see an exponentially damped
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FIG. 3 Numerical estimate of the autocorrelation function of noisy (D = 0.5As1/2/mm2) current

density time series: complete data (a) and enlarged part for small time lag (b).

oscillation which can be approximated by

ψ(s) = ψ(0) exp(−s/te) cos(ω0s), (11)

with a noisy tail, which will vanish with increasing size of the statistical ensemble. By

comparison with (9) we find for ω0te � 1 the relation te ≈ (π/2)tcor [Schöll et al., 2005].
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FIG. 4 Main spectral peak for noise intensity D = 0.5As1/2/mm2 and Lorentzian fit (thick line)

The Fourier transform of the autocorrelation function (10) is, by the Wiener-Khinchin

theorem, the power spectrum of the current density. From (11) we obtain approximately a

Lorentzian shaped power spectral density,

S(ω) ∝
ω2

(ω2 − ω2
0)

2 + (2ω
te

)2
, (12)
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and 1/te is now simply the half-width of the spectral peak. Thus, more regular motion

will be characterized by larger correlation times and smaller values of the spectral half-

widths. From Fig. 4 we see that the Lorentzian approximation (12) can indeed be used to

reproduce the main peak of the observed power spectrum of noise-induced oscillations in

the superlattice.
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FIG. 5 (a) Main spectral peak of the power spectral density S(2πf) vs. frequency f for increasing

noise (from top to bottom: D = 0.3, D = 0.5 and D = 1.0As1/2/mm2). (b) Basic period T0 vs

noise intensity D.

To understand how the noise level in the supperlattice affects the essential characteristics

of noise-induced oscillations we consider spectra for different values of noise intensities D

(Fig. 5(a)). We see that an increase of the noise level broadens the spectral peak, leading

to a decreased correlation time tcor (Fig. 6). At the same time the position of the main

spectral peak, corresponding to the basic frequency ω0 = 2π/T0 of the oscillations, is almost

unchanged. This is confirmed by Fig. 5(b), where the dependence of the basic period T0 (the

inverse of the frequency at which the spectral peak is centered) of the noisy oscillations versus

the noise intensity is presented. This basic period is close to the period of self-oscillations

above the Hopf bifurcation.
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FIG. 6 Correlation time tcor vs noise intensity D.

4. CONTROL OF NOISE-INDUCED DYNAMICS BY DELAYED FEEDBACK.

In contrast to the problem of controlling deterministic chaos, for which a number of

methods have been proposed and successfully applied [Schuster, 1999], control of noise-

induced motion is a significantly less studied concept. Previous works mainly concentrate

on the control of stochastic oscillations in low-dimensional simple models [Balanov et al.,

2004; Christini & Collins, 1995; Janson et al., 2004; Landa et al., 1997; Masoller, 2002; Schöll

et al., 2005], or self-oscillations in the presence of noise [Goldobin et al., 2003], while control

of noise-induced dynamics in spatially extended systems seems still to be an open problem.

In this Section, we study the effect of a time delayed delayed feedback of the form

F (t) = K(s(t) − s(t− τ)). (13)

Time delayed feedback of this form is well studied in the field of chaos control [Schuster,

1999], and was proposed in [Janson et al., 2004] for the improvement of the coherence of

noise-induced oscillations in low-dimensional systems. Here s(t) is an output signal of the

system, τ is a delay time, and K is the feedback strength.

An easy way to implement control in the superlattice model is to choose the output signal

to be the total current density, s(t) = J(t) and simply add the control force to the external

voltage U , i.e.

U = U0 −K(J(t) − J(t− τ)) (14)

where U0 is the time-independent external voltage bias. This control scheme is depicted in

Fig. 7. Since both voltage and total current density are externally accessible global variables,

such a control scheme is easy to implement experimentally.
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FIG. 7 Control circuit with time-delayed feedback loop

We now study the effect of applying the control force of the form (14) to the dynamical set

of Eqs. (1)–(4). A natural choice for τ is the basic period of the Hopf oscillation (or integer

multiples of it). In Fig. 8(a) we see that the application of the control force indeed improves

the coherence of the current signal, in particular for large noise level D. From Fig. 8(b) we

can conclude that the reason for this behavior is that the main peak in the power spectrum

becomes narrower, though at the same time additional harmonic peaks occur.
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FIG. 8 (a) Correlation time tcor vs noise intensity D: without delayed feedback (solid line), and

with delayed feedback with K = 3×10−6V mm2/A and τ = 2.5ns (dotted line). (b) Power spectral

density of noise-induced oscillations with and without control.

From a practical point of view it is important to estimate the magnitude of the control

force (13), which influences the system due to the delayed feedback. In Fig. 9 the expectation

value of F 2 is plotted as a function of the time delay. While this quantity never vanishes, it

demonstrates an oscillating behavior having pronounced minima at those values of τ which
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are multiples of the basic period of noise-induced oscillations without control.
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FIG. 9 Expectation value of the squared control force 〈F 2〉 vs time delay τ for K = 3 ×

10−6V mm2/A and D = 0.5.

Next, we study the influence of varying τ upon the power spectra of the system. As is

seen from Fig.10, with increasing τ additional peaks at the corresponding lower frequencies

appear, while the main (most pronounced) peak moves towards lower frequencies. This is

even more evident from Fig. 11, where the period of the resulting main peak as a function of

τ is plotted. We see that for a large range, T0(τ) has an almost piecewise linear, oscillatory

character. Similar behavior has been found for the simple models without spatial degrees

of freedom and explained analytically via a linear stability analysis [Balanov et al., 2004;

Janson et al., 2004] or via the power spectrum [Schöll et al., 2005].

Thus we note that while the position of the main peak of the spectrum is insensitive to

the noise level in the case without control, it is indeed possible to shift its position by the

proposed time delayed feedback scheme.

5. DISCUSSION AND CONCLUSION

We have studied noise-induced patterns in the semiconductor superlattice model in the

regime where the only deterministic stationary solution (without noise) is a steady state. We

have shown that in this case noise can induce quite coherent oscillations of the global current

in the device, which could be associated with the spatio-temporal dynamics of depletion and

accumulation fronts of the carrier density. The variation of the noise level can substantially

change the regularity of noise-induced oscillations, whereas their basic time scale is almost

insensitive to noise (cf. Fig. 6 and Fig. 5(b), respectively).
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FIG. 10 (a) Power spectral density S(f) of the controlled system for increasing values of time

delay τ : (a) τ = 2.5ns, (b) τ = 4.5ns, (c) τ = 8.5ns and (d) τ = 16.5ns. ( D = 0.5As1/2/mm2,

K = 3 × 10−6V mm2/A)

A practical application of such a behavior may be the construction of a sensor, which

encodes the level of noise in only one essential parameter of the output signal, namely its

coherence. In this case the noise is not necessarily only the internal noise which is caused by

shot noise, but may have other external sources, such as the temperature of the environment,

the presence of a magnetc field, etc. For such an application it is advantageous that the

mean frequency itself does not depend significantly on the noise level.

A method of controlling stochastic oscillations, generated by a semiconductor superlattice,

by means of time delayed feedback has been investigated. It was shown that control not
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FIG. 11 Basic period as a function of the time delay τ . K = 3 × 10−6V mm2/A and D = 0.5.

only enhances the regularity of motion but also allows us to manipulate the time scales of

the system by varying the time delay τ . Control of noise-induced oscillations in this case

is interesting from a practical point of view, in terms of electronic oscillators with tunable

coherence properties and time scales, but also is of general theoretical interest, in terms of

stochastic systems with memory.
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