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Abstract 
We developed a numerical method for large-scale simulations of cellular flow in 
microvessels.  We employed a particle method, where all blood components were 
modeled using a finite number of particles.  Red blood cell deformation was 
modeled by a spring network of membrane particles.  A domain decomposition 
method was used for parallel implementation on distributed memory systems.  In 
a strong scaling test up to 64 CPU cores, we obtained a linear speedup with the 
number of CPU cores, and demonstrated that our model can simulate O(103) red 
blood cells in vessels a few tens of micrometers in diameter.  For quantitative 
validation, we analyzed the Fåhræus effect and the formation of a cell-depleted 
peripheral layer.  Simulations were performed for tube hematocrit ranging from 20 
to 45%, and microvessel diameters from 9 to 50 μm.  Our numerical results were 
in good agreement with previous experimental results both for the discharge 
hematocrit and cell-depleted peripheral layer thickness. 

Key words: Large-Scale Simulation, Red Blood Cell, Microcirculation, 
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1. Introduction 

In blood vessels with diameters larger than 300 μm, blood may be modeled as a 
homogeneous fluid; however, in small vessels, i.e. capillaries, arterioles, and venules, the 
particulate nature of blood becomes more apparent, and individual cell motion affects blood 
flow.  Red blood cells (RBCs) are the most important constituent of blood in terms of 
rheology, and comprises a 20 to 45% volume fraction of blood.  Recent confocal 
microscopy with microfluidics has improved experimental measurements of RBC behavior 
in microvessels.  However, owing to light scattering by RBCs and light absorption by 
hemoglobin, RBCs can be observed only under low hematocrit condition (Hct < 20%)(1,2). 

Numerical modeling, however, can further our understanding of the many physiological 
and pathological processes in microcirculation.  It is important to simulate blood flow 
based on cellular scale modeling; hence, we must model RBCs explicitly.  An RBC is a 
highly deformable, biconcave-shaped cell with a high surface to volume ratio.  It contains 
the Newtonian solution hemoglobin, whose viscosity is several times that of blood 
plasma(3).  The membrane of an RBC consists of a lipid bilayer underlined by a spectrin 
network(4,5), which exhibits resistance to shear and bending(6).  This is a fluid-structure 
interaction problem, where the solid mechanics of the membrane must be coupled with the 
fluid mechanics of the cytoplasm (interior liquid) and plasma (exterior liquid).  It requires 
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fine computational meshes smaller than the cell size.  Consequently, the computational 
power required to simulate blood flow increases with vessel diameter. 

Recently, some research groups have developed numerical methods for simulating the 
three-dimensional flow of multiple RBCs through microvessels.  Doddi and Bagchi(7) 
employed a front tracking method to simulate the flow of biconcave capsules in channels 
with a hematocrit up to 27%.  Dupin et al.(8) employed a lattice Boltzmann method (LBM) 
to simulate 200 RBCs in a rectangular channel.  Zhao and coworkers analyzed a few tens 
of RBCs flowing in microvessels up to 17 μm in diameter by utilizing a boundary integral 
method (BIM)(9).  Fedosov et al.(10) investigated the formation of a cell-depleted peripheral 
layer (CDPL) in microvessels up to 40 μm using a dissipative particle dynamics (DPD)(11) 
method with a coarse-grained model of RBCs (12,13).  McWhirter et al.(14) modeled vesicles 
within a multiparticle collision dynamics framework(15).  Despite the progress in blood 
flow modeling and promising results, high computational expense remains a major problem, 
particularly when blood flow in vessels with diameters of tens or hundreds of micrometers 
is simulated, involving hundreds or thousands of RBCs.  Alternatively, two-dimensional 
simulations have been used for vessels that are hundreds of micrometers in diameter (16). 

A number of models of blood flow based on particle methods have been proposed(17,18). 
We also developed a numerical model based on the particle method, and successfully 
applied it to studies of malaria infection(19,20) and primary thrombogenesis(21).  While this 
method has the potential to simulate complex blood flow induced by multiple RBCs, 
coupled with intercellular biochemical interactions, the large computational load has limited 
us to simulating blood flow only in small vessels (D~12 µm).  To progress further, 
development of a computational procedure to overcome this problem is necessary. 

The first objective of this study was to develop a highly scalable parallel 
implementation of our method on distributed memory systems, towards large-scale 
simulations including O(103) RBCs.  While this model was validated at the cellular scale, 
it is still unclear whether it can simulate blood flow in vessels that are tens of micrometers 
in diameter.  Hence, the second objective was to validate the accuracy for microvascular 
flow, through analysis of the Fåhræus effect(22) and the cell-depleted peripheral layer.   

 

2. Methods 

2.1. Numerical model 

Detailed information on the model can be found in our previous paper(19).  Herein, we 
provide a brief review.  All blood components, including plasma, cytoplasm and 
membranes are modeled using a finite number of particles.  Each particle has physical 
quantities such as position, velocity, and viscosity.  An RBC is modeled as an initially 
biconcave cell(23), consisting of membrane particles and cytoplasm particles.  A triangular 
network of membrane particles are constructed, where neighboring particles are connected 
by a linear spring to represent the elastic property of RBCs.  Bending resistance between 
neighboring elements is also considered.  Assuming that the plasma and cytoplasm are 
incompressible and viscous fluids, particle motion is governed by the conservation laws of 
mass and momentum as: 

  

0=
Dt
Dρ ,       (1) 

 

fuu
+∇+−∇= 2μρ p

Dt
D ,     (2) 

 
where t refers to the time, ρ the density, u the velocity, p the pressure, μ the dynamic 
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viscosity, D/Dt the Lagrangian derivative, and f the external force.  We used a moving 
particle semi-implicit (MPS) method(24) to discretize the governing equations.  In the MPS 
method, the momentum equation is split into an advection-diffusion equation and a Poisson 
equation for pressure.  The incompressibility is expressed by the particle number density, 
implicitly combined with the Poisson equation.  Forces generated by the 
stretching/compression and bending of the membrane are substituted into the external force 
term f for membrane particles only.  Since the motion of membrane particles are directly 
solved by Eqs. (1) and (2), the hydrodynamic interaction between RBCs as well as that 
between an RBC and the wall is automatically computed, and the no-slip condition at the 
membrane is satisfied in this procedure.  In our previous paper(19), this model was 
confirmed to simulate the deformation of RBCs by optical tweezers stretching(25) and 
deformation in shear flow(26), including in Plasmodium falciparum malaria infection. 
 

2.2. Parallel algorithm 

Distributed memory systems are configured so that some memory is local to each 
processor, which is not globally accessible.  The only way to share data among processors 
is to send data explicitly from one processor to another.  This is called the message-passing 
model(27).  Therefore, in contrast to shared memory systems, performance depends on how 
well the algorithm is designed.  One of the most important points in parallel computing is 
to balance computational load and minimize communication among processors(28).  We 
used a domain decomposition method to distribute global computational load to local 
processors (CPU cores).  Computational domain is geometrically divided into several 
sub-domains with approximately equal computational expenses; these sub-domains are 
distributed among parallel processors.  In particle methods, the position of a particle 
changes considerably over time, and subsequently, it can move from one processor to 
another.  Hence, in general, domain partitioning does not guarantee load balancing for 
parallel computation of particle methods.  However, in the case of flow in vessels, the 
MPS method guarantees that the number of particles in a sub-domain does not significantly 
change over time, because the mass conservation is expressed by the constant number 
density of particles.   

In this paper, we used one-dimensional (1D) partitioning; however, extension to 
two-dimensional (2D) and three-dimensional (3D) partitioning is straightforward.  Figure 
1 shows communication between two neighboring processors.  In the MPS method, the 
gradient and Laplacian operators are discretized by interaction models between particles(24), 
and the radius of the interaction is bounded by the kernel size (re).  Thus, the particles 
located on or near the inter-processor-boundary (IPB) need information on ghost zone 
particles.  These ghost zone particles are equivalent to particles near the ghost zone in the 
neighboring processor (rank), hence a list of particles near the ghost zone is created in all 
processors.  The information of these particles is then shared among the neighboring ranks 
through a single-packed message and MPI_SENDRECV operation(27).  Since processes 
need to communicate mainly with their nearest neighbors, we created a virtual Cartesian 
communicator between processors using MPI_CART_CREATE and MPI_CART_SHIFT 
functions(27,28) to optimize communication.  This communicator also enables us to easily 
implement a periodic boundary condition between the inlet and outlet of the vessel.  
Dynamic load balancing can be performed by small displacement of IPB to control the 
number of particles in each processor sub-domain.  Processors periodically exchange 
information on ghost regions as the computation advances. 
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Fig. 1 A schematic of communication between two processors 
 
 

Another problem in parallel implementation arises from RBCs.  Figure 2 shows an 
example of 1D partitioning to 40 sub-domains.  Since an RBC usually locates at several 
processors, recognition of each sub-part and communication for the computation of 
membrane forces are needed.  In our model, the network of membrane particles is identical 
for all RBCs to avoid sending connectivity information.  We set the index of membrane 
particles in a fixed order, which enables automatic recognition of connectivity by each 
processor.  When an RBC crosses an IPB for the first time and enters a new processor 
domain, we allocate memory for all membrane particles of that RBC.  Additionally, in the 
new sub-domain, a local index (name) is assigned to this RBC, which is shared among those 
neighboring processors that contain a part of this RBC.  This local index is used to 
recognize RBC parts in several processor sub-domains.  The information on RBC particles 
in the IPB is sent in the same manner as fluid particles and stored with the assigned order of 
the index.  Memory allocated to the RBC that exited for the next processor is then used for 
newly entering RBC. 
 
 

 
 

Fig. 2 Domain decomposition for parallel computing. When two membrane particles of a 
triangle are located in a sub-domain, the triangle is colored for this sub-domain. 

 
 
To avoid large memory allocation in processors, the computational domain is 

partitioned using a serial pre-processing program, and the information of that sub-domain is 
input into processors.  Briefly, the simulation procedure is as follows: first, the viscous and 
elastic force terms are calculated, where the viscous term is solved implicitly by using a 
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parallel incomplete Cholesky conjugate gradient (ICCG) algorithm with collective and 
non-blocking communications.  Then, the intermediate velocity and position are updated 
in each processor sub-domain, and the new information on ghost region particles is 
communicated.  To solve the linear system with a sparse matrix, which arises from the 
pressure Poisson equation, we developed a parallel bi-conjugate gradient stabilized 
(BiCGstab) iterative solver.  Velocity and position of the particles are corrected using the 
pressure gradient term.  Finally, information on particles that crossed IPB is communicated 
again. 

 

3. Results and Discussion 

We simulated blood flow in a circular channel with a diameter D and a length L.  
Boundary conditions were no-slip at the wall and a periodic boundary condition at the inlet 
and outlet.  To drive flow in the vessel, a pressure difference Δp was given between the 
inlet and outlet.  Initially, RBCs were distributed randomly throughout the channel.  In 
this paper, the density of all particles was ρ = 1.0 × 103 kg/m3, the viscosity of plasma was 
μp = 1.3 × 10-3 Pas, and that of cytoplasm was μc = 8.0 × 10-3 Pas.  For the viscosity of the 
membrane, we used the averaged value, μm = (μp + μc)/2.  The healthy RBC model 
proposed in Imai et al.(19) was employed in this study (see Imai et al.(19) in detail).  Each 
simulation was run for a sufficient enough time to remove the effects of the initial transition 
and to analyze the data over time at an almost quasi-steady state.  Even at the quasi-steady 
state, small fluctuation inherently occurs in time due to the motion of RBCs.  Figure 3 
shows an example of the fluctuation of cell-depleted peripheral layer thickness.  The 
tendency in the time histories were almost the same for all the cases in this study, we hence 
averaged values after 0.3 s for a quasi-steady state. 

We examined cases of the diameters ranging from 9 to 50 μm and hematocrits, Hct = 
20, 30 and 45%.  For each diameter, a fixed pressure difference was given between the 
inlet and outlet, and then pseudo shear rate, γ = U/D, was in the range of 60 s-1 to 120 s-1, 
where U is the average velocity.  
 
 

 
 

Fig. 3 Time histories of cell-depleted peripheral layer thickness for D = 19 μm. 
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3.1. Performance of parallel computations 

We evaluated the strong scaling of our parallel computations, in which a fixed number 
of total particles was solved, while the number of CPU cores increased.  We simulated 
conditions of D = 25 μm, L = 120 μm, and Hct = 30%, where 160 RBCs were included and 
the total number of particles was approximately 1,200,000.  Speedup is defined as the ratio 
of the computational time with a reference number of CPU cores to that with a given 
number of CPU cores.  We used a CPU cluster connected with a Gigabit Ethernet, in 
which each node had two CPUs, Quad-core Intel Xeon X5570.  Since a computation with 
less than 8 CPU cores does not require communication through the Ethernet connection, we 
set the reference number at 8 CPU cores.  The speedup is presented in Fig. 4, where the 
ideal linear speedup and the speedup for plasma flow (without RBCs) are also shown.  The 
speedup for blood flow shows an almost linear relationship with the given number of CPU 
cores up to at least 64 cores, specifically, compared with 8 cores, a 7-fold speedup was 
achieved with 64 cores, which was almost the same as that for the plasma flow.  This result 
indicates the high efficiency of the developed parallel algorithm for particle-based modeling 
of blood flow.  This enables us to simulate blood flow at a higher hematocrit in larger 
microvessels.  For example, Fig. 5 shows a snapshots of a blood flow simulation for Hct = 
45% and D = 50 μm, wherein approximately 1000 RBCs and a total number of 6,000,000 
particles were solved.  As shown in Fig. 5b, we could visualize the shapes of RBCs in the 
center of the vessel, when the domain was cut in the central plane.  Such an image is 
difficult to obtain experimentally due to light absorption by hemoglobin and light scattering 
by RBCs. 
 

 

 
 

Fig. 4 Speedup with the number of CPU cores 
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(a) 

 

 
(b) 

 
Fig. 5 An example of a large-scale simulation for D = 50 μm and Hct = 45%: (a) A snapshot 
of typical RBCs. (b) The domain is cut in the central plane of the vessel, and colors 
represent the local velocity. 

 
 

3.2. Fåhræus effect 

To quantitatively validate the numerical model, we analyzed the Fåhræus effect.  The 
Fåhræus effect here refers to discharge hematocrit (HctD) at the outlet of a microvessel 
being higher than the hematocrit in the microvessel (tube hematocrit, Hct)(22).  This 
phenomenon (Hct < HctD) results from the coupling effect of axial migration of RBCs and 
velocity profile in the vessel.  The axial migration of RBCs leads to hematocrit variation in 
the radial position (local hematocrit, HctL) and the formation of a cell-depleted peripheral 
layer (CDPL) near the wall.  Because of the slow velocity near the wall, the average 
velocity of RBCs becomes faster than the suspension velocity(29). 

In a given time interval, particles, i.e. plasma, membrane, and cytoplasm particles exit 
from the vessel.  When the number of these particles is defined as Np (plasma), Nm 
(membrane), and Nc (cytoplasm), the value of HctD is calculated by: 
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Pries et al.(30) proposed an empirical expression of HctD as a function of D and Hct: 

 

( )( )DD
DD

D

eeHctHct
Hct
Hct 01.035.0 6.07.111 −− −+−+= .   (4) 

 
A comparison of numerical results and empirical expression is presented in Fig. 6.  
Numerical results are in good agreement with the empirical expression for a wide range of 
vessel diameters and Hct values.  As shown in the figure, HctD decreases when the 
microvessel diameter increases from 9 to 50 μm.  A general tendency of the discharge 
hematocrit is HctD > Hct, where HctD reaches ~55% for Hct = 45%.  However, when we 
consider a ratio of the discharge hematocrit to the tube hematocrit, HctD/Hct, a lower tube 
hematocrit results in a higher ratio.  For example, in the case of D = 37 μm, HctD/Hct = 
1.23 for Hct = 45%, but HctD/Hct = 1.42 for Hct = 20%. 
 
 

 
 

Fig. 6 Comparison of discharge hematocrit between numerical and experimental(30) results 
 

 
To further study the Fåhræus effect, the local hematocrit and velocity profiles were 

analyzed.  Instantaneous distributions of RBCs are shown in Fig. 7 and Fig. 8 for D = 19 
μm and 37 μm, respectively.  A thinner CDPL resulted from a higher tube hematocrit 
condition.  We calculated the radial variation of the local hematocrit (HctL) as 
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rNrNrHct
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L ++

+
= ,    (5) 

 
where r is the radial position, and N(r) is the number of particles located at a radial position 
within r ± 0.5 μm.  We first calculated an instantaneous value of the local hematocrit at 
each time t, and then we averaged the values over the time.  Figure 9 shows the radial 
variation in HctL/Hct.  When D = 19μm and Hct = 20%, the local hematocrit is 2.5 times 
larger than the tube hematocrit (HctL/Hct > 2.5) at the center of the vessel.  The local 
hematocrit decreases toward the CDPL with a sharp drop near the CDPL.  A similar 
tendency was observed in a numerical study by Freund et al.(31), in which blood flow for  

Diameter [μm]

H
ct

D
[%

]

0 10 20 30 40 50 600

20

40

60

80

100
Simulation (Hct = 20%)
Pries et al. (Hct = 20%)
Simulation (Hct = 30%)
Pries et al. (Hct = 30%)
Simulation (Hct = 45%)
Pries et al. (Hct = 45%)



 

 

Journal of  Biomechanical 
Science and Engineering  

65 

Vol. 7, No. 1, 2012 

D = 11.3 μm and Hct = 30% was simulated by BIM.  For D = 37 μm and Hct = 20%, the 
tendency was identical, and HctL/Hct > 2.0 at the center of the vessel.  When the tube 
hematocrit increases, the local hematocrit distribution becomes flatter with a decrease in the 
CDPL, resulting in a smaller HctL/Hct value in the center of the vessel.  In the case of D = 
37μm and Hct = 45%, HctL > 63% in the center of the vessel, while HctL remained 42% for 
Hct = 20%.  This suggests that RBCs were pushed together away from the center in the 
high hematocrit condition. 
 
 

 
                  (a)                                   (b) 
 

Fig. 7 Snapshots of blood flow for D = 19 μm: (a) Hct = 20%; (b) Hct = 30%. 
 

 

   
                  (a)                                  (b) 
 
Fig. 8 Snapshots of blood flow for D = 37 μm: (a) Hct = 20%; (b) Hct = 45%.  

 
 

 
                   (a)                                    (b) 
 

Fig. 9 Radial distribution of HctL/Hct: (a) D = 19μm; (b) D = 37 μm. 
 

 
While the local hematocrit profile depends strongly on the tube hematocrit, the velocity 

profile is relatively unaffected.  Radial variation in velocity is presented in Fig. 10, where 
the velocity is normalized to the maximum velocity in each case.  The velocity near the 
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center of the vessel exhibited a flat (plug flow) profile; however the velocity near the wall 
had a steep gradient, which matched the velocity gradient of Poiseuille flow if we did not 
normalize.  The overall velocity profile differed significantly from the Poiseuille flow 
profile of plasma flow.  With increasing Hct, the velocity profile became a more blunt 
profile in the RBC region, but the difference was not so large for 20% ≤ Hct ≤ 45%.  In 
particular, the velocity profiles were almost identical between Hct = 30% and Hct = 45% for 
D = 37μm.  These results indicate that lower tube hematocrit conditions cause a thicker 
CDPL and a higher ratio of local hematocrit to tube hematocrit (HctL/Hct) in the RBC 
region, maintaining the velocity profile.  This phenomenon results in the higher ratio of 
discharge hematocrit to tube hematocrit (HctD/Hct) at lower tube hematocrit conditions. 

 
 

 
                   (a)                                    (b) 

 
Fig. 10 Velocity profile normalized by the maximum velocity: (a) D = 19μm; (b) D = 37 

μm. 
 
 

3.3. Cell-depleted peripheral layer 

As shown in the previous section, the thickness of the CDPL was linked directly to the 
Fåhræus effect.  We therefore checked the accuracy of the predicted CDPL thickness by 
comparing with experimental results.  To calculate the CDPL thickness from the 
simulation, we measured the distance between the outermost edge of RBCs and the wall, 
which was similar to previous experimental procedures(32-34).  The outermost edge was 
actually indistinct and irregular in experiments(35,36).  It also exhibited spatial and temporal 
fluctuations in numerical simulations because of the dispersive effect of interactions 
between deformable cells.  Therefore, the vessel was divided into small segments in both 
the flow and angular directions, and the CDPL thickness over all segments and time was 
averaged. 

We compared the numerical results with the experimental results in vivo (32,36) and in 
vitro(37,38) (Fig. 11).  First, the results of our simulations were in almost perfect agreement 
with the in vivo work of Tateishi et al.(32), in which a perfused isolated rabbit mesentery was 
used.  However in our simulation, the microvessel wall was assumed to be rigid, while the 
in vivo experiment had an elastic wall.  Maeda et al.(33) reported that the CDPL of an 
elastic vessel was 0.4 μm thinner than that of the hardened vessel at high hematocrits (30% 
≤ Hct ≤ 45%), but thicker than the hardened vessel at low hematocrits (Hct = 8%).  The 
perfectly matched results may indicate that our model includes a slight difference from the 
expected values, for example, a 0.4 μm larger value might be expected for Hct = 30 and 
45% under the current rigid wall conditions.  Although the 0.4 μm-difference demonstrates 
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the accuracy of our model, the CDPL measured in vivo may include the glycocalyx layer, 
which is of 0.4-0.5 μm thickness.  When the glycocalyx layer is considered in the in vivo 
experiment, the results of Tateishi et al. may be increased by 0.4-0.5 μm.  The expected 
values would then be similar to our predicted values. 

Next, we compared the results with in vitro experiments.  Although we defined Hct by 
the tube hematocrit, the results in vitro presented by Bugliarello and Sevilla(37) and Reinke 
et al.(38) were based on the discharge hematocrit (HctD).  When we apply Eq. (4) by Pries et 
al.(39) to these HctD values, the corresponding tube hematocrits are Hct = 30% for 
Bugliarello and Sevilla (D = 40 μm) and Hct = 34% for Reinke et al (D = 30.8 μm).  On 
the other hand, in our model at Hct = 30%, HctD = 39% was predicted for D = 24 μm, and 
HctD = 37% for D = 37 μm (Fig. 6).  Therefore, when the differences between the tube and 
discharge hematocrits are taken into account, our results show good agreement with these in 
vitro experiments. 

While our model shows good agreement with the above-mentioned in vivo and in vitro 
experiments, a significant difference from in vivo work of Kim et al.(36) was detected.  
Their results also differ from that of others, likely due to the use of systemic hematocrit 
(HctS).  They measured the CDPL thickness for HctS = 42% in rat cremaster muscle.  
However, concentration of RBCs is known to decrease with decreasing vessel diameter, 
which is also referred to the Fåhræus effect(40,41); therefore, it is difficult to directly convert 
HctS into Hct or HctD.  Kim et al. compared their obtained CDPL thickness with the in 
vitro result of HctD = 45% by Reinke et al.(38) for D = 31 μm, 58 μm.  They found 0.3μm 
increases in thickness in vivo, and concluded that this was due to the absence of the 
glycocalyx in vitro.  Note that our predicted values for Hct = 30% were in-between those 
of Reinke et al.(38) and Kim et al.(36) 

We also compared these results with previous numerical results.  While the DPD 
method of Fedosov et al.(10) predicted a slightly thicker CDPL than ours in all cases, the 
BIM used by Freund et al.(31) generated results that matched our own.  

Note that aggregation of RBCs was not modeled in the simulations.  Reinke et al.(38) 
compared the CDPL between plasma, dextran, and saline solutions.  They demonstrated no 
significant effect of the aggregation on the CDPL thickness for high shear rates, which were 
estimated at γ > 50 s-1.  The above-mentioned experimental studies also used shear rates 
similar to ours, although Kim et al.(36) used a slightly higher value for small diameter 
vessels (D < 30 μm) to prevent aggregation.  Hence, the effect of aggregation can be 
ignored in the current analysis. 

It is also noted that in non-aggregating conditions, when we increased the shear rate 
from 30 to 90 s-1 for D = 37 μm, the CDPL thickness increased only by 0.3 μm on average 
as shown in Fig. 11, where the blue open symbols represent the results for γ = 30 s-1.  The 
CDPL thickness became approximately constant around γ = 90 s-1.  Although the 
numerical model of Fedosov et al.(10) predicted a decrease in the CDPL with increasing 
shear rate, other studies demonstrated the same tendency as ours, including a numerical 
simulation(31) and experiments in vitro(38) for the shear rate investigated.  Therefore, small 
variations in the shear rate would not affect the result. 
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Fig. 11 Cell-depleted peripheral layer thickness as a function of microvessel diameter.  
Blue open symbols at D = 37 μm represent the results for γ = 30 s-1. 

 
 

4. Conclusions 

We have presented here a computational method for large-scale simulation of blood 
flow in microcirculation.  In our method, all blood components were represented by a 
finite number of particles.  A two-dimensional spring network of membrane particles was 
constructed to model the deformation of RBCs.  We developed a parallel implementation 
of this method on distributed memory systems using a domain decomposition technique.  
In a strong scaling test up to 64 CPU cores, we obtained a linear speedup with the number 
of CPU cores, and demonstrated that our model can simulate O(103) RBCs in vessels a few 
tens of micrometers in diameter.  For quantitative validation, we analyzed the Fåhræus 
effect and CDPL formation.  Simulations were performed for tube hematocrits ranging 
from 20 to 45%, and microvessel diameters from 9 to 50 μm.  Our numerical results were 
in good agreement with previous experimental results for both the discharge hematocrit and 
the CDPL thickness.  Experiments have failed to observe RBC behavior in the center of 
microvessels in a dense RBC suspension, owing to light scattering by RBCs and light 
absorption by hemoglobin.  Instead, our method could be applied to studies of deformation 
and interactions of RBCs in microcirculation, to the design of microfluidic devices for 
blood diagnosis, and to predict the diffusion of solute and drug particles. 
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