Reversibilität und Mastergleichung

- Ergodenvorstellung
- Makroskopischer Phasenraum
- Wahrscheinlichkeiten
 - bedingte
 - gekoppelte
 - einfache

- Detailliertes Gleichgewicht
- Chapman-Kolmogorov
- Mastergleichung

Nach Thermodynamik und Statistische Mechanik

Wolfgang Weidlich §2 S. 113ff
Reversibilität und Ergodizitätsproblem

Ensemble abzählbarer Teilchen \Rightarrow

delta-funktionsartige "exakte" Verteilungsfunktion

$\zeta = (\xi, t) = \sum_i \delta (\xi - \xi^i(t))$ \hspace{1cm} $\xi^i(t)$ Bahnlagen

Betrachte mikrokanonisch Ensemble (isoliertes System !)

t_1 \hspace{1cm} t_2 \hspace{1cm} t_3 \hspace{1cm} Wellen

\Rightarrow Übergang zur Gleichverteilung des mK. E.

Nach Liouville Flächen bleibt konstant !

Entropie wächst nicht !

UmkehrEinwand : \hspace{1cm} \begin{itemize}
 \item beschrankte Eingriffsmöglichkeit t_3 Zustand zu präparieren
 \item führt zu einer verschrumpften Begrenzung (des Randes).\end{itemize}
Makroskopische Observable

Es seien \(N = 2f \) makroskopische Observable
\[A^r(\xi) \]
mit \(\{ \xi \} \) die \(2f \) kanonisch konjugierten
Variablen \(\{ q_1, \ldots, q_{2f}; p_1, \ldots, p_{2f} \} \).

\[d \psi(\xi) = \prod_{j=1}^{2f} d \xi_j \] (Änderung der
Kurzschreib-
weise, vgl.)

Auch im Nichtgleichgewicht sei \(A^r(\xi) \) makroskopisch
charakterisierbar, d.h. \(\langle A^r(\xi) \rangle \) näherungsweise
durch geschlossenes Gleichungssystem phänomenologisch

Zelle \(g_\alpha \subset \Gamma \) mit

\[\xi \in g_\alpha \text{, wenn } a^{(r)} \leq A^r(\xi) < a^{(r)} + \Delta a^{(r)} \]

\((r = 1, \ldots, n) \).

Index \(a = \{ a^{(1)}, \ldots, a^{(n)} \} \) durchläuft diskrete
Gitterpunkte in einem \(n \)-dim Raum makro. Observable

Es sei \(\phi_\alpha = \int_{g_\alpha} d \psi(\xi) \) Volumen der Zelle \(g_\alpha \)
Definition: "verschmierte" Funktion $\tilde{\phi}(\xi, t)$

$$\tilde{\phi}(\xi, t) = \phi_a^{-1} \int_{\mathfrak{a}} \phi(\xi, t) \, d\varphi(\xi) = \tilde{\phi}_a(t) \quad \text{für } \xi \in \mathfrak{a}_a$$

Äquivalenz von $\tilde{\phi}(\xi, t)$ mit $\phi(\xi, t)$ für ma. Ob.

$$\langle A^{(r)} \rangle_t = \sum_a \int_{\mathfrak{a}_a} A^{(r)}(\xi) \phi(\xi, t) \, d\varphi(\xi) \approx$$

$$\sum_a \tilde{\phi}_a(t) \phi_a^{(r)} = \sum_a W(a, t) a^{(r)}$$

$$W(a, t) = \tilde{\phi}_a(t) \phi_a \quad \text{Wahrscheinlichkeit bei gegebenem } \phi(\xi, t) \text{ ein System in Zelle } \mathfrak{a}_a \text{ vorzufinden.}$$

Notation in Reihenfolge ihrer Aufhebung:

- $W = \text{makroskopische Wahrscheinlichkeit (einfach & gekoppelt)}$
- $T_i = \text{bedingte W. dichte}$
- $w = \text{gekoppelte W.}$
- $\phi = \text{einfache W. dichte}$
- $P = \text{bedingte W.}$
Wahrscheinlichkeiten auf mikroskopischer und makroskopischer Ebene.

A bedingte Wahrscheinlichkeit

$$\Pi(\xi', t+\tau; \xi, t) \, d\varphi(\xi')$$

System in $d\varphi(\xi')$ zu $t+\tau$.

Sollen es zu Zeit t in Zustand ξ.

Da in Π exakte Bahnrucke $\xi'(t) = \xi + \Delta \xi(t)$ gilt

$$\Pi(\xi', t+\tau; \xi, t) = \delta^{2f}(\xi' - (\xi + \Delta \xi(t)))$$

- ändert nur von τ ab nicht t
- Mikroreversibilität $t \rightarrow -t$

$$\Pi(\xi', t+\tau; \xi, t) = \Pi(\xi', t; \xi, 0) = \Pi(\xi, -\tau; \xi', -\tau - \tau)$$

mit $\{\xi\} = \{\varphi_1, \ldots, \varphi_P; -P_1, \ldots, -P_P\}$

B gekoppelte Wahrscheinlichkeit

$$dW(\xi', t+\tau; \xi, t) = \Pi(\xi', t+\tau; \xi, t) \delta(\xi, t) \, d\varphi(\xi') \, d\varphi(\xi)$$
P(B|A) = \frac{P(B \cap A)}{P(A)}

P(B \cap A) = P(B|A)P(A)

(A und B unabhängig) \quad P(A \cap B) = P(A)P(B)

c \cdot \text{einfache Wahrscheinlichkeit}

System in $d\mathbf{q}(\xi')$ zu $t+\tau$

$g(\xi', t+\tau) \cdot d\mathbf{q}(\xi') = d\mathbf{q}(\xi') \cdot \sum_{\xi} g(\xi', t+\tau; \xi, t) g(\xi, t) d\mathbf{q}(\xi)$

Integration über alle bedingte \mathbf{W}

s. 6a Hinweis

D \cdot \text{gekoppelte Wahrscheinlichkeit}

System in zelle a zu t, dann in b zu $t+\tau$

$W(b, t+\tau; a, t) = \sum_{\xi} d\mathbf{q}(\xi') \cdot \sum_{\xi} d\mathbf{q}(\xi) \cdot \pi(\xi', t+\tau; \xi, t) g(\xi, t)$

$\xi \in g_b \quad \xi \in g_a$

E \cdot \text{einfache Wahrscheinlichkeit}

$W(b, t+\tau) = \sum_{\xi} g(\xi', t+\tau) \cdot d\mathbf{q}(\xi') = \sum_{a} W(b, t+\tau; a, t)$

$\xi \in g_b$
Bisher: Übergang zu Wahrscheinlichkeiten sowohl mikroskopisch als auch makroskopisch "nur" Umschreibungen der exakten, deterministischen Bewegungsgleichungen.
Exakte Dichtefunktion (abhängig von exakter Bahnkurve!)
erhält durch verschmierte, makroskopisch äquivalente
Funktion $\tilde{\sigma}$: gekoppelt und einfach

$$W(b, t+\tau; a, t) = P(b, t+\tau; a, t) \cdot W(a, t)$$

$$W(b, t+\tau) = \sum_a P(b, t+\tau; a, t) \cdot W(a, t)$$

Für makroskopisch bedingte Wahrscheinlichkeit

$$P(b, t+\tau; a, t) = \phi_a^{-1} \int d\psi(\xi') \int d\psi(\xi) \pi(\xi', t+\tau; \xi, t)$$

$$\xi' \in \mathcal{B}_b$$

$$\xi \in \mathcal{B}_a$$

$$= \frac{\phi_a(b, a; \tau)}{\phi_a}$$

$\phi(a, b; \tau)$ Anteil des Volumens der Zelle a der gemäß der Bewegungsgl.
in Zelle b übergeht s. (2a) ii) z.B.

Es gilt:

$$\sum_b P(b, t+\tau; a, t) = \phi_a^{-1} \int d\psi(\xi') \int d\psi(\xi) \pi(\xi', t+\tau; \xi, t) = 1$$

$$\xi' \in \mathcal{B}_b$$

$$\xi \in \mathcal{B}_a$$

da Bahnruten irgendwohin (\sum_b) gehen müssen.
oder

\[\sum_{b} W(b, t+\tau) = \sum_{a} W(a, t) = 1 \]

Detailliertes Gleichgewicht

Ausgangspunkt: (F) makroskopisch bedingte W.
(A) Mikroreversibilität

\[P(b, t; a, 0) \phi_a = P(\hat{a}, t; \hat{b}, 0) \phi_b \]

Makroskopische Observablen unterscheiden sich zwischen \(a \) und \(\hat{a} \) (wenn sie gerade Funktionen der \(p_i \)).

Bedeutung

gleiche Flächen
Chapman-Kolmogorov Beziehung mit

\[P_{t_2+t_1}(e,a) = \sum_b P_{t_2}(e,b) P_{t_1}(b,a) \]

Zeitentwicklung ist ein Markov-Prozess

Ausnahme Bedeutung:

Zeitentwicklung von \(\xi(t) \)
unempfindlich gegenüber
wiederholten Grobkornmaßen.

Gegenbeispiel:
Spezielle Anfangsbedingung \((s, o, t_3) \), die aus
dem Blachgewebe läuft.
Stochastische Bewegungsgleichung

\(P_{a+l} (c,a) = P_{l} (c,a) + \Delta l \frac{dP_{l} (c,a)}{dl} \)

oder mit Umformung

\[\frac{d}{dt} P_{l} (c,a) = \sum_{b} \left(p(c,b) P_{l} (b,o) - p(b,c) P_{l} (c,a) \right) \]

bzw.

\[\frac{d}{dt} W(c,t) = \sum_{b} \left(p(c,b) W(b,t) - p(b,c) W(c,t) \right) \]

In der einfachsten Form

\[\frac{d\hat{P}}{dt} = A \hat{P} \]

mit Bedingungen an die Matrix oder Übergangsrate ...