Was ist das Gehirn? (Wer fragt hier?)

Nervensystem (eins von elf Hauptorgansystemen)

Zentrale- und peripheres Nervensystem

Geschichte der Physik, Ausgangspunkt

Sensorik → Gehirn → Motoneurone → Umwelt → Rückkopplung

Rückenmark

Beispiel: Amphitheater (Akustik)
op. Linsen (Optik)

Bewegungsgleichungen

\[\dot{u} = f(u, t, \mu) \]

Der Bereich, der sich mit zeitlichen Änderungen der Organsysteme beschäftigt, ist die Physiologie.

Neurophysiologie ist Ursprung der Elektrophysiologie

Fast immer autonome Systeme

\[\dot{u} = f(u, \mu) \]

Parameter

- Struktur
- Evolution
- Klassifikation
- Verteilung
- Wachstum
Aufbau ZNS

Hauptregionen im Gehirn

- CTX = cerebral cortex
- BG = basal ganglia
- CB = cerebellum
- HY = hypothalamus
- T = tectum
- TG = tegmentum
- TH = thalamus
- P = pons
- M = medulla
- R = rachis

• CTX = Große Hirnrinde

• Cortex Großhirrinde

GS = Graue Substanz:
vorwiegend Nervenzellkörper

Weiße Substanz: Nervenfasern

* im peripheren Nervensystem Ganglion (A.b.d.R., s. BG)
Kodierung von Information mit oft graduierten Potentialänderungen

Frequenz von Aktionspotentialen

dendritischen und neuritischen Axon

Afferenz (lat. affere = hinbringen)
Efferenz (aus, ex = hinaus) und ferre (trag)

Neben bemerkenswert weggelassen.
Beispiel: Innere Uhr

Suprachiasmatic nucleus (SCN)

Kerngebiet im Hypothalamus, das für den circadianen Rhythmus verantwortlich ist.

liegt am Kreuzung des Nervus opticus (Sehnerv) "Chiasma opticum". Licht-Dunkel-Wechsel führt zu *Entrainment*.

Experiment: Effect of surgical disconnection
(Yamaguchi et al., Science 307, 2003)

Schnip Schnipp

SCN dorsal ventral

kein Rhythmus

kein Rhythmus

ventral dorsal

\(\text{24h} \)
Modell: Innere Uhr
\[u = f (u) \]

\[\Theta_i = \omega_i, \quad i = 1, 2, \ldots, N \gg 1 \]

Annahmen
- Amplitude: stabil
- Phase: frei

All-to-all-Kopplung in einem SCN Netzwerk

\[\Theta = \omega_i + \sum_{j=1}^{N} K_{ij} (\Theta_j - \Theta_i) \]

\[\begin{align*} &\text{Funktion Bedingungen} \\
&\text{(periodisch)} \quad \bullet K_{ij} (\phi + 2\pi n) = K_{ij} (\phi) \\
&\quad \bullet K_{ii} (0) = 0 \end{align*} \]

Typische Kopplungsfunktion
\[K_{ij} (\phi) = \frac{k}{N} \sin \phi \quad \text{Kuramoto-Modell} \]

\[u \text{. s. w.} \quad K_{ij} (\phi) = \frac{k}{N} \sin \phi \]

globales Kopplungstitel, die wir können verteilen sein, mit einem

maximalen \[\frac{k}{N} \]

1975
Kuramoto-Modell

- Biologische Systeme
- Laser-Arrays und Josephson-Kontakte (Physik)
- Chemische Systeme

Einfaches Modell für Synchronisationsphänomene

Mit rotierendem Koordinatensystem \(\Theta_i \rightarrow \Theta_i - \Omega t \)
mit \(\Omega \) Erwartungswert von \(g(\omega) \)
Verteilungsfunktion der \(\omega_i \).

Mit \(r \epsilon = \frac{1}{N} \sum_{i=1}^{N} e^{i \Theta_i} \)

\(\dot{\Theta}_i = \omega_i + kr \sin(\Psi - \Theta_i) \)
Kooperatives Verhalten?

Ordinanzparameter

\[\Gamma e^{i\phi} = \frac{1}{N} \sum_{i=1}^{N} e^{i\Theta_i} \]

Ergebnis

\[k_c = \frac{2}{\pi \cdot g_{\text{max}}} \]

Schlussfolgerung

\[\Rightarrow \text{Desynchronisation im dorsalen SCN könnte "effect size" sein.} \]

\[\rho(\omega) = \frac{1}{\pi} \frac{s}{s^2 + (\omega - \tau)^2} \]

(Verteilungsfkt. \(\arctan \))
Warum oszillieren Gehirnzellen?

Auszug zu Na^+ (1)

Ersatzschaltbild

Nernst-Plank-Gleichung

$$E_{\text{ion}} = \frac{RT}{2F} \ln \left(\frac{C_e}{C_i} \right) = -61 \text{mV} \ln \left(\frac{C_i}{C_e} \right)$$

C_i: Konzentration

1. Kirchhoffsche Regel

$$C \cdot V = g_{\text{Na}} (E_{\text{Na}} - V) + g_K (E_K - V) + g_L (V_{\text{rest}} - V)$$

$$V(V_{\text{rest}}) = 0$$

Strom-Spannungskurve

1: Gleichgewicht ohne Pumpen

2: $2:3$ wg. Na\(^+\)ATPase
Ansatz von Hodgkin und Huxley

\[g_{\text{ion}} = \frac{g_{\text{ion}}}{\tau} \cdot N^x \]

mit

\[N(v) = \alpha(v) (1 - N(v)) - \beta(v) N(v) \]

\[\Rightarrow \text{Satz von gekoppelten nicht-linearen DGLs} \]

die für gewisse Parameter als Lösung

einen Grenzzyklus bilden.

Relaxationsoszillatoren (Kippschwingungen)

ähnlich dem Van-der-Pol-Oszillator

\[x' = \varepsilon (1 - x^2) + x = 0 \]

\[\varepsilon = 0 \quad \text{Harmonischer Oszillator} \]

\[0 < \varepsilon < 2 \quad \text{Schwingungen/Zeitskalentrennung} \]