Page Content
Time-delayed feedback control of noise-induced oscillations
A main focus of our work during the last proposal period has been
the control of noise-induced oscillations through time-delayed
feedback. In collaboration with the Visiting Scientists Dr. N. Janson
and Dr. A. Balanov we were able to show, for the first time, that in
nonlinear stochastic systems which in the absence of noise exhibit no
autonomous oscillations whereas in the presence of noise oscillate in
an irregular manner, the regularity (coherence) as well as the
timescales of these oscillations could be tuned by time-delayed
feedback.
To begin with, we studied simple generic
models, namely the Van der Pol [1]oscillator below a subcritical Hopf
bifurcation, as a model for a system in the vicinity of a bifurcation,
and the FitzHugh-Nagumo model as prototype example of an excitable
system. Suitable as quantitative measure for the coherence of the
oscillations, depending on the system, is either the correlation time,
with the normalized autocorrelation function, the normalized
variance of the interspike intervals, or the coherence factor (the
ratio between the height and the half-width of the dominant
spectral peak). For both classes of models, we studied, in
detail, the dependence of the correlation time and the spectral
properties on the noise intensity and the control parameters.
In the Van der Pol oscillator, we could explain the
behaviour of the system quantitatively through an analysis in the
vicinity of the fixed point, since the system is slightly below a
local bifurcation. In the absence of noise and control, a
supercritical Hopf bifurcation takes place and the fixed point is a
stable focus below the bifurcation. The complex eigenvalues of the
fixed point of the delay equation determine which modes can be excited
by noise. The eigenvalue with the smallest absolute value of the real
part, i. e. the least stable one, determines the correlation time as
well as the dominant period of the noise-induced oscilations. When the
real parts of two modes cross, the dominant peak jumps to the new
eigenvalue branch. The noisy spectrum, as well as the correlation
time, can be analytically calculated in a linear approximation.
Moreover, we have developed a self-consistent mean field
approximation, which is in good agreement with the numerical results,
upto relatively large noise intensity. Here, the nonlinear term is
substituted by a rescaled bifurcation parameter and determined from
the variance of the multivariate Ornstein-Uhlenbeck process. For this
effective linear process, the correlation time for optimal time delay
and the noisy spectrum can be calculated explicitly analytically. The
corrlelation time is substantially increased for optimal time delay,
while for badly chosen time delay it becomes practically zero. In
contrary to the local dynamics of the Van der Pol oscillator, the
FitzHugh-Nagumo model describes an excitable system with global
dynamics and is often used to explains the spiking behavior of
neurons: for certain choice of parameters, the only attractor in the
deterministic system is a stable node. The time-delayed feedback
control here cannot be treated through a local analysis, however in
collaboration with subdivision A4 we have developed a discrete state
model which allows for a semi-analytical treatment,
An
important extension is the time-delayed feedback control of coupled
neuron systems,
which we studied by means of two
symmetrically-diffusively coupled FitzHugh Namumo equations, as
minimal model for two interacting neurons [2]. The influence upon the
coupled dynamics through local control is of practical
relevance. Therefore we studied to what extent can the feedback in one
of the two sub-systems control the coherence- and
synchronization-behaviour of the whole system. We found that the
correlation time and the mean interspike interval of both sub-systems
can indeed be controlled. A further interesting result is that the
stochastic synchronization - measured by the frequency ratio
(frequency synchronization) as well as by the synchronization index
(phase synchronization) - can be changed in both directions. That
means, the synchronization can be amplified or suppressed, depending
on the choice of the time delay and the control amplitude. Here, there
is again a resonance-like dependence on the time delay. This result is
especially interesting in view of possible neural applications, where
a high synchronization is often related to a sick state (Parkinson,
epilepsy), which can obviously be suppressed through local feedback
control. Similar effects have been found in Subdivision C3 for systems
of many globally coupled neurons with global feedback.
/AG_Schoell/posters/dpg_jp_a4_01.pdf
/AG_Schoell/posters/ddays_bh_01.pdf