direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Nonlinear charge transport in semiconductor nanostructures

Semiconductors have been established as models for complex spatio-temporal dynamics. Our group has a long-standing experience in modelling nonlinear and chaotic spatio-temporal pattern formation of charge transport. At present we are investigating the following nanostructures, which are the main focus of current research in semiconductor technology:


  • Semiconductor superlattices consist of a periodic sequence of alternating layers of two different materials with different band gaps. By applying a DC voltage, complex spatio-temporal dynamics of the electron  distribution generated by the formation of electric field domains and self-generated current oscillations can be observed. We apply methods of chaos control on these oscillation by means of time delayed feedback. 






    • Prof. Dr. A. Wacker [1]

      (Lunds Universitet, Schweden) [2],

      A.-P. Jauho [3]

      (Mikroelektronik Centret Lyngy, Dänemark): Quantentransporttheorie

    • Prof. Dr. M. Fromhold [4] (University of Nottingham, UK) [5]
    • Prof. Dr. L. Eaves [6]

      (University of Nottingham, UK [7]): Experiment

    • Prof. Dr. J. Kolodzey

      (University of Delaware, USA [8]): Hochfrequenzoszillationen (exp.)


    • Prof. Dr. E. Gornik

      (Institut für Festkörperelektronik TU Wien [9]);

      Transmission durch Übergitter (experimentell)

    • Prof. Dr. K. F. Renk [10]

      (Universität Regensburg); Höchstfrequenz-Oszillationen (experimentell)








  • Resonant tunneling structures [11], consist of a quantum well embedded between two potential barriers giving rise to bistable,  Z-shaped current-voltage characteristics. Lateral pattern formation vertical to the current flow leads to complex chaotic scenarios of breathing current filaments as well as trigger fronts. In order to stabilize unstable spatio-temporal patterns we use methods of time delayed feedback. 





    • Dr. P. Rodin [12]

      (Ioffe Physico-Technical Institute St. Petersburg, Russia) [13]: Schaltfronten

    • Prof. Dr. S.W. Teitsworth [14]

      (Duke University, NC, USA) [15]; Laterale Musterbildung in

      niederdimensionalen Halbleiterstrukturen (experimentell)






  • Quantum-dot structures [16],

    where the carriers are fully confined. In many respects this resembles the situation in atomic physics, so that these structures can be considered as artificial atoms. Ensembles of self-assembled quantum dots embedded in a resonant tunneling structure exhibit strongly nonlinear transport behaviour (negatice differential conductivity) and unusual noise properties.




    • Prof. Dr. A. Wacker [17], Dr. P. Samuelsson [18] (Lunds Universitet,Schweden [19])
    • Prof. Dr. R. J. Haug

      (Universität Hannover [20])

    • Prof. Dr. L. Eaves [21] (University of Nottingham, UK) [22]
    • Prof. Dr. T. Brandes [23] (TU Berlin) [24]




------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.
Copyright TU Berlin 2008