TU Berlin

AG Nichtlineare Dynamik und Kontrollews16/17

Inhalt des Dokuments

zur Navigation

Seminar: Control of complex systems and networks - Wintersemester 2016/17

Seminar: Control of complex systems and networks - Wintersemester 2016/17
LV-Nr. 3233 L 606

Prof. Dr. Eckehard Schöll, PhD
Prof. Dr. Kathy Lüdge
Dr. Anna Zakharova
Dr. Philipp Hövel
Dr. Iryna Omelchenko

Zeit: Dienstag 16:00
Ort: EW 731
Start: 18. Oktober 2016

Der Besuch der Veranstaltung entspricht 3 ECTS Punkten. Mit Vortrag und Ausarbeitung ergeben sich 5 ECTS Punkte.

The seminar offers perspectives on our current research in the area of Nonlinear Dynamics and Control. The seminar is particularly suitable for BSc and MSc students looking for a final project. Students, who want to obtain a Seminarschein, are welcome as well.

Control of complex nonlinear systems and networks has various aspects including stabilization of unstable steady states, periodic oscillations, or spatiotemporal patterns, suppression of chaos, design of dynamics of complex networks, and control of the coherence and timesdcales of noise-mediated motion. Feedback control loops represent an important concept to stabilize unstable states adaptively by using internal dynamics of the system to adjust the control force. In time-delayed feedback control the control signal is constructed from some time-delayed output variable of the system. The topic of the seminar are promising novel fields of application for control algorithms in complex systems and networks, which find their applications in diverse fields such as lasers, optical systems, power grids, ecological systems, and neural networks.

Control of complex systems and networks

Zeitlicher Ablauf


Vorbesprechung und Einführung

Rabies virus persistence in dog population in Central African Republic
E. Schöll, A. Zakharova, P. Hövel, I. Omelchenko

Davide Colombi

Self-Organized Synchronization in Decentralized Power Grids [WIT12, ROH12]
Nour Eldine Hanbali

Synchronization in multiplex networks
Prof. Sarika Jalan, Indian Institure of Technology Indore

Passively mode-locked semiconductor laser subject to feedback [OTT14b, JAU15]
Dr. Lina Jarigue

Optimal percolation on complex networks [MOR15]
Andreas Koher

Transition from Coherence to Incoherence in a Network of Nonlocally Coupled Chaotic Maps. Abstract
Galina Strelkova (Saratov State University)

Contrallability in temporal networks [LI16]
Kristian Boroz
Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators [FRA05b, SEL12]
Andrej Krimlowski

Control of epidemics [BRO13, LAW15, LAW16, BEL15, BEL16]
Kristian Boroz
Time-delayed feedback control in neuroscience
Ines Wichert

Control of epilepsy [ROT14, AND16]
Nikolas Heym

Control of chimera states by noise [LOO16, SEM16]
David Schicke

Synchronization Patterns: From Network Motifs to Hierarchical Networks [KRI16]
Lasse Ermoneit

Universal resilience patterns in complex networks [GAO16]
Frederik Schirdewan
Vorträge, die mit einem * markiert sind, können von Studenten zur Erlangung eines Seminarscheins gehalten werden.
Wer Interesse an einem Vortrag hat, sollte sich mit den entsprechenden Betreuern in Verbindung setzen. Die Vortragsthemen werden dann spätestens in der ersten Seminarstunde am 18. Oktober 2016 verteilt.
Die gehaltenen Vorträge sind unter Seminardokumentationen verfügbar. Die Zugangsdaten werden im Seminar bekannt gegeben und können bei erfragt werden.

Literatur zu den Vorträgen

  • [WIT12] Witthaut D. and Timme M.: Braess's paradox in socillator networks, desynchronization and power outage. New J. of Phys. 14, 083036 (2012).
  • [ROH12] Rohden M., Sorge A., Timme M., and Witthaut D.: Self-Organized Synchronization in Decentralized Power Grids. Phys. Rev. Lett. 109, 064101 (2012).
  • [GAO16] Gao J., Barzel B., and Barabási A.-L.: Universal resilience patterns in complex networks. Nature 530, 307 (2016).
  • [COR13] Cornelius S., Kath W., and Motter, A. E.: Realistic control of network dynamics. Nature Commun. 4, 1942 (2013).
  • [BAR12d] Barnosky A. D. et. al.: Approaching a state shift in Earths biosphere. Nature 486, 52 (2012).
  • [LOO16] Loos S., Claussen J. C., Schöll E., and Zakharova A.: Chimera patterns under the impact of noise. Phys. Rev. E 93, 012209 (2016).
  • [SEM16] Semenova N., Zakharova A., Anishchenko V. S., and Schöll E.: Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett. 117, 014102 (2016).
  • [LI16] Li A., Cornelius S., Liu Y., Wang L., and Barabási A.-L.: The fundamental advantages of temporal networks. arXiv:1607.06168 (2016).
  • [FRA05b] Fradkov A. L.: Application of cybernetic methods in physics. Physics-Uspekhi 48, 2, 103 (2005).
  • [SEL12] Selivanov A., Lehnert J., Dahms T., Hövel P., Fradkov A. L., and Schöll E.: Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E 85, 016201 (2012).
  • [BRO13] Brockmann D. and Helbing D.: The hidden geometry of complex, network-driven contagion phenomena. Science 342, 6164, 1337 (2013).
  • [LAW15] Lawyer G.: Understanding the influence of all nodes in a network, Sci. Rep. 5, (2015).
  • [LAW16] Lawyer G.: Measuring the potential of individual airports for pandemic spread over the world airline network. BMC Infectious Diseases 16, 1, 1 ISSN 1471-2334, (2016).
  • [BEL15] Belik V., Fiebig F., Lentz H.H.K. and Hövel P.: Controling contagious processes on temporal networks via node isolation. arXiv:1509.04054 (2015).
  • [BEL16] Belik V., Mikolajczyk R. and Hövel P.: Control of epidemics on hospital networks. Control of Self-Organizing Nonlinear Systems, 431 Springer, (2016).
  • [FIE07] Fiedler B. , Flunkert V., Georgi M., Hövel P. and Schöll E.: Refuting the odd number limitation of time-delayed feedback control. Phys. Rev. Lett. 98, 114101 (2007).
  • [JUS07] Just W., Fiedler B., Flunkert V., Georgi M., Hövel P., and Schöll E.: Beyond odd number limitation: a bifurcation analysis of time-delayed feedback control. Phys. Rev. E 76, 2, 026210 (2007).
  • [ROT14] Rothkegel A. and Lehnertz K.: Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators. New J. of Phys. 16, 055006 (2014).
  • [AND16] Andrzejak R. G., Rummel C., Mormann F., and Schindler K.: All together now: Analogies between chimera state collapses and epileptic seizures. Sci. Rep. 6, 23000 (2016).
  • [POE15] Poel W., Zakharova A., and Schöll E.: Partial synchronization and partial amplitude death in mesoscale network motifs. Phys. Rev. E 91, 022915 (2015).
  • [SOR16a] Sorrentino F., Pecora L. M., Hagerstrom A. M., Murphy T. E. and Roy R.: Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci. Adv. 2, e1501737 (2016).
  • [KRI16] Krishnagopal S., Lehnert J., Poel W., Zakharova A., and Schöll E.: Synchronization Patterns: From Network Motifs to Hierarchical Networks. arXiv:1607.08798 (2016).
  • [MOR15] Morone F. and Makse H. A.: Influence maximization in complex networks through optimal percolation. Nature 524, 65 (2015).
  • [SUN13a] Sun J. and Motter A. E.: Controllability Transition and Nonlocality in Network Control. Phys. Rev. Lett. 110, 208701 (2013).



Schnellnavigation zur Seite über Nummerneingabe