TU Berlin

RG Nonlinear dynamics and controlSeminar_Tuesday

Page Content

to Navigation

Seminar: Noise Effects in Complex Systems - Summer Term 2015

Seminar: Noise Effects in Complex Systems
Summer Term 2015
LV-Nr. 3233 L 607 G-RISC Seminar
Prof. Dr. Eckehard Schöll, PhD
Dr. Anna Zakharova, Dr. Philipp Hövel

Time: Tuesday, 12:15
Room: EW 731 (PN 731)
Begin: 14 April 2015

The seminar offers perspectives on our current research in the area of Nonlinear Dynamics and Control. The seminar is particularly suitable for BSc and MSc students looking for a final project. Students, who want to obtain a "Seminarschein", are welcome as well.

The nonlinear dynamics of complex systems and networks is a field of active research with applications in diverse fields such as physics, chemistry, biology, technological or socio-economic systems, for instance coupled lasers, neuronal networks, genetic regulatory networks, electronic circuits, chemical or electrochemical oscillators, power grids, transportation networks, or the internet. The seminar will focus on noise effects in nonlinear dynamical systems like coherence resonance, stochastic bifurcation, stochastic synchronization, and the interplay of noise with delay, nonlinearity, and the topology of complex networks.

Noise Effects in Complex Systems

The seminar is in cooperation with the research group Fradkov (St.Petersburg State University, Russia) and is supported by the German-Russian Interdisciplinary Science Center (G-RISC).

 

Schedule

Date
Title
Speaker
Advisors
14.4.

Preliminary discussion and introduction
E. Schöll, A. Zakharova, P. Hövel
21.4.

Time-delayed feedback control of coherence resonance [HIZ06, AUS09, JAN03, GEF14, SEM15]
Maria Masoliver Vila
AZ
28.4.

Vibrational resonance in (self-)coupled neural systems [UZU15, HU14]
Andrea Heilrath
PH
5.5.

Numerical methods for stochastic delay differential equations
Jakub Sawicki
AZ
12.5.

Fluctuations and noise in spread of epidemics [ROZ11]
Pascal Blunk
VB, PH
19.5.

Timing jitter reduction by optical feedback [JAU15a, OTT14b]
Marc Lambrecht
BL
26.5.

Stochastic synchronization in complex systems and networks [HAU06, BRA09]
Jakub Sawicki
ES
2.6.

Recognition of hybrid images [HAK15]
Felix Herrmann
JL
9.6.

Coherence resonance in systems with type I [GAN93] and type II [PIK97, LIN04] excitability
Leonidas Eleftheriou
VB
16.6.

Noise-Induced Transitions in Bistable Electronic Transport Systems
Prof. Dr. Stephen Teitsworth (Duke University, Durham, NC, USA)
23.6.

Coherence resonance near subcritical Hopf bifurcation [USH05, ZAK10a, ZAK13]
Fabian Sternkopf
AZ
30.6.

The impact of network topology on coherence resonance and stochastic synchronization [BAL14]
Frederico Brückelmann
PH
7.7.

The impact of hyperbolicity on chimera states
Nadya Semenova (Saratov)
AZ
14.7.*

Coherence resonance in quantum-dot lasers [ZIE13, OTT14a]

BL
Talks marked by * are suitable for students who want to obtain a “Seminarschein”.
If you are interested in a particular topic, please contact one of the advisors. Final assignment of the topics will be done on April 14, 2015.

The presentations are available online at “Seminardokumentationen”. Login and password will be announced in the seminar and can be inquired at .

References

  • [AUS09] R. Aust, P. Hövel, J. Hizanidis, and E. Schöll: Delay control of coherence resonance in type-I excitable dynamics, Eur. Phys. J. ST 187, 77–85 (2010).
  • [BAL14] P. Balenzuela, P. Rué, S. Boccaletti and J. García-Ojalvo: Collective stochastic coherence and synchronizability in weighted scale-free networks, New J. Phys. 16, 013036 (2014)
  • [BRA09] S. A. Brandstetter, M. A. Dahlem, and E. Schöll: Interplay of time-delayed feedback control and temporally correlated noise in excitable systems, Phil. Trans. R. Soc. A 368, 391 (2010).
  • [GEF14] P. M. Geffert, A. Zakharova, A. Vüllings, W. Just, and E. Schöll: Modulating coherence resonance in non-excitable systems by time-delayed feedback, Eur. Phys. J. B 87, 291 (2014).
  • [HAK15] H. Haken and J. Portugali: Information Adaptation: The Interplay Between Shannon Information and Semantic Information in Cognition (Springer Briefs in Complexity, 2015).
  • [HAU06] B. Hauschildt, N. B. Janson, A. G. Balanov, and E. Schöll: Noise-induced cooperative dynamics and its control in coupled neuron models, Phys. Rev. E 74, 051906 (2006).
  • [HIZ06] J. Hizanidis, A. G. Balanov, A. Amann, and E. Schöll: Noise-induced front motion: signature of a global bifurcation, Phys. Rev. Lett. 96, 244104 (2006).
  • [HU14] D. L. Hu, J. H. Yang and X. B. Liu: Vibrational resonance in the FitzHugh-Nagumo system with time-varying delay feedback, Computers in Biology and Medicine 45, 80 (2014)
  • [GAN93] G. Hu, T. Ditzinger, C. Z. Ning, and H. Haken: Stochastic resonance without external periodic force, Phys. Rev. Lett. 71, 807 (1993).
  • [JAN03] N. B. Janson, A. G. Balanov, and E. Schöll: Delayed feedback as a means of control of noise-induced motion, Phys. Rev. Lett. 93, 010601 (2004).
  • [JAU15a] L. C. Jaurigue, E. Schöll, and K. Lüdge: Passively mode-locked laser coupled to two external feedback cavities, in Novel In-Plane Semiconductor Lasers XIV, edited by (2015), vol. 9382b of Proc. SPIE.
  • [LIN04] B. Lindner, J. García-Ojalvo, A. B. Neiman, and L. Schimansky-Geier: Effects of noise in excitable systems, Phys. Rep. 392, 321–424 (2004).
  • [OTT14b] C. Otto, L. C. Jaurigue, E. Schöll, and K. Lüdge: Optimization of timing jitter reduction by optical feedback for a passively mode-locked laser, IEEE Photonics Journal 6, 1501814 (2014).
  • [OTT14a] C. Otto, B. Lingnau, E. Schöll, and K. Lüdge: Manipulating coherence resonance in a quantum dot semiconductor laser via electrical pumping, Opt. Express 22, 13288 (2014).
  • [PIK97] A. Pikovsky and J. Kurths: Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett. 78, 775 (1997).
  • [ROZ11] G. Rozhnova, A. Nunes and AJ. McKane: Stochastic oscillations in models of epidemics on a network of cities, Phys. Rev. E 84, 051919 (2011)
  • [SEM15] V. Semenov, A. Feoktistov, T. Vadivasova, E. Schöll, and A. Zakharova: Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: theory versus experiment, Chaos 25, 033111 (2015).
  • [USH05] O. V. Ushakov, H. J. Wünsche, F. Henneberger, I. A. Khovanov, L. Schimansky-Geier, and M. A. Zaks: Coherence resonance near a Hopf bifurcation, Phys. Rev. Lett. 95, 123903 (2005).
  • [UZU15] M. Uzuntarla, E. Yilmaz, A. Wagemakers and M. Ozer: Vibrational resonance in a heterogeneous scale free network of neurons, Commun. Nonlinear Sci. Numer. Simul. 22, 367 (2015)
  • [ZAK10a] A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, and J. Kurths: Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator, Phys. Rev. E 81, 011106 (2010).
  • [ZAK13] A. Zakharova, A. Feoktistov, T. Vadivasova, and E. Schöll: Coherence resonance and stochastic synchronization in a nonlinear circuit near a subcritical Hopf bifurcation, Eur. Phys. J. Spec. Top. 222, 2481–2495 (2013).
  • [ZIE13] D. Ziemann, R. Aust, B. Lingnau, E. Schöll, and K. Lüdge: Optical injection enables coherence resonance in quantum-dot lasers, Europhys. Lett. 103, 14002–p1–14002–p6 (2013).

Navigation

Quick Access

Schnellnavigation zur Seite über Nummerneingabe