Inhalt des Dokuments
Es gibt keine deutsche Übersetzung dieser Webseite.
Towards the control of networks with time-varying topologies: analysis of livestock trade
Dr. Philipp Hövel:
Many networks exhibit time-dependent topologies, where an edge only
exists during a certain period of time or its weight is subject to
temporal fluctuations and delays. This becomes of particular
importance, if the evolution of the network topology operates on a
timescale similar to the local dynamics of the nodes. Thus,
time-varying networks form profound challenges for the control of the
dynamics of coupled elements. While previous research has mostly
focused on static or time-aggregated couplings, our objective is to
develop a framework for the investigation of the dynamics on temporal
networks.
This presentation addresses propagation properties of
infectious diseases in time-dependent networks. In particular, we
discuss the analysis of a dataset of livestock trade movements. The
corresponding networks are known as a major route for the spread of
animal diseases, where the chronology of contacts is crucial.
In
detail, we find that a time-aggregated approach might fail to identify
epidemiologically relevant nodes [1]. Hence, we explore the
adaptability of the concept of centrality of nodes to temporal
networks using a data-driven approach based on the example of animal
trade. We utilize the size of the in- and out-component of nodes as
centrality measures and show that a ranking of nodes according to
their component sizes is reasonably stable for a wide range of
infectious periods. Samples based on this ranking are robust enough
against varying disease parameters and hence are promising tools for
disease control. They could be used to identify sentinel nodes that
are best suited to influence the dynamics on the networks.
[1] M. Konschake, H. H. K. Lentz, F. J. Conraths, P. Hövel, and T. Selhorst: "On the robustness of in- and out-components in a temporal graph", PLoS ONE 8, e55223 (2013).