direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

Applied Dynamical Systems Theory


Prof. Dr. Rainer Klages

April 15 to July 1, 2019

Mondays: 12:15 - 13:45

BH-N 334, TU Berlin

Course Outline

This course introduces to fundamental properties of chaotic dynamical systems. It is based on rigorous mathematical concepts applied to time-discrete one-dimensional maps. These models are easy to understand and analytically tractable.


  1. Simple examples of dynamical systems: driven nonlinear pendulum, bouncing ball, billiards, kicked rotor, standard map, Bernoulli shift, tent map, logistic map, rotation on the circle, piecewise linear maps
  2. Topological properties of one-dimensional maps: cobweb plots, periodic points, periodic orbits, stability analysis, bifurcations, expanding/contracting maps, hyperbolicity, topological transitivity, sensitive dependence on initial conditions
  3. Probabilistic properties of one-dimensional dynamics: Frobenius-Perron equation and -operator, partitions, invariant measure, absolute continuity, SRB measure
  4. Assessing chaos, and related properties: Poincaré-Bendixson theorem, Poincaré surface of section, rigorous definitions of chaos, Lyapunov exponents, ergodicity, mixing, entropies, Pesin’s theorem, escape rates, Cantor set, fractals

Zusatzinformationen / Extras